Automatic Tracking of Bandpass Sampling OFDM Signals in Mobile Environment for Enhanced Security Communication

Xin Wang and Heung-Gyoon Ryu

Department of Electronics and Engineering, Chungbuk National University
wxzf007@naver.com, ecomm@cbu.ac.kr

Abstract

Countless security and defense systems require an accurate Angle of Arrival (AOA) detection for incoming signals. Angle of Arrival (AOA) estimation is basic procedure required by several monitoring and tracking systems for security applications and other defense purposes. In this paper, a combined OFDM system and bandpass sampling method using Multiple Signal Classification (MUSIC) algorithm for automatic (angle of arrival) AOA tracking is discussed. And we propose a new method that adding (time division multiplexing) TDM with bandpass sampling in the same time to avoid interference due to RF filter characteristics. Also, we consider Doppler effect for the targets’ movement in mobile environment and after compensating the Doppler effect with a valid range, the system performances well. Simulation results show that the performances of MUSIC spectrum for AOA due to various conditions and demonstrates the accuracy of AOA estimations.

Keywords: MUSIC, AOA, Bandpass sampling, OFDM, Doppler effect

1. Introduction

Countless security and defense systems require an accurate Angle of Arrival (AOA) detection for incoming signals. Smart antenna is one of the possible solutions to increase the channel capacity due to an increase in the number of mobile units and the need for high-speed digital communication in mobile communication. Smart antenna utilizes the beamforming technique to spatially direct the electromagnetic power to an intended mobile unit while spatially null the signal power along other mobile units. The system needs the process of angle of arrival estimation to locate the mobile unites before beamforming can be performed. Angle of arrival estimation technology play an important role in enhancing the performance of adaptive arrays for mobile wireless communications [1]. A number of angle of arrival estimation algorithms have been developed. For the most recent ones being MUSCI [2] and ESPRIT [3] algorithms, who both utilizing subspace-based on exploiting the eigen structure of the input covariance matrix and thus requires a higher computation effort. Although ESPRIT needs less computation, the MUSIC algorithm is found to be more stable and accurate [4]. In this paper, we use the MUSIC algorithm combine the OFDM bandpass sampling signal model to perform the antennas sensing to allow accurate azimuth. The accuracy of the estimation in azimuth increases proportional to the number of antenna elements utilized.

Bandpass sampling can be used for direct down conversion without analog mixers. In practice, the required sampling rate for ADC can be too high to be achieved if the Nyquist sampling theorem is to be satisfied [5]. So we use bandpass sampling which is a technique that samples high data rate signals with smaller sampling rate than Nyquist sampling rate to
relax the demand for ADCs. After down-sampling about over two band signals using bandpass sampling, the signals are digitized and then two band signals can be received [7-10].

In this paper, we propose a bandpass sampling technique with time division multiplexing (TDM). In previous system, although over two signals can be down-sampling without interference between signals, it is possible to generate interference due to RF filter characteristics. RF filter cannot cut adjacent band signals so the remaining adjacent band signals (undesired signals) can affect desired signals. So we propose bandpass sampling with TDM that can avoid previous problems to separate over two signals timely.

2. System Model

![Figure 1. System Model](image)

2.1. OFDM Signal and Multi-Antenna Receiver

In this paper we consider two signals that have different center frequency. Transmitted signals are based on OFDM. Eq. (1) is the signals in time domain. Assume that there are two received bands. \(X_{k,m}^A \) and \(X_{k,m}^B \) are transmitted signals respectively. As Eq. (1), the signals is represented after IFFT in time domain.

\[
x(t) = \begin{cases}
\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_{k,m}^A e^{j \frac{2\pi k f_{A}}{N}} + X_A(t) \\
\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_{k,m}^B e^{j \frac{2\pi k f_{B}}{N}} + X_B(t)
\end{cases}
\]

The receiver is equipped with an uniform linear array(ULA) of \(M \) sensors located along a straight line. The system can be viewed as the multiplication of each received ray by a steering vector considering the direction of arrival of each multipath. Assume that there are \(P \) uncorrelated narrowband signals \(x_p(t) \) received by ULA from different direction \(\theta_p \), corrupted by AWGN, where \(p=1,2,\ldots P \). The observation is given as

\[
X(t) = \sum_{p=1}^{P} a(\theta_p) * x_p(t) + n(t)
\]

where \(a(\theta) \) is the array steering vector given by
\[a(\theta) = \left[1, e^{-j2\pi d \sin \theta / \lambda}, \ldots, e^{-j2\pi d \sin \theta (M-1) / \lambda} \right]^T \]

where \(d \) is the inter element spacing, \(\lambda \) is the signal wavelength. When we take snapshot at time \(k=1,2\ldots K \), we can get

\[X(k) = \sum_{p=1}^{P} a(\theta_p) \ast x_p(k) + n(k) \]

where noise \(n(k) \) is assumed to be both temporally and spatially white, and uncorrelated with signal \(s_p(k) \).

2.2. Angle of Arrival Detection using MUSIC

MUSIC stands for MUltiple SIgnal Classifacation. The covariance matrix, \(R \), is the collected data for each of the array receivers in the time domain. The correlation matrix is given as [6]

\[R = E \left[XX^H \right] = AR_A + \sigma^2 I \]

where \(R \) is the \(P \times P \) signal correlation matrix. \(\sigma^2 \) is the white noise power. The noise subspace \(E_N \) used in MUSIC can be obtained from eigenvalue decomposition of \(R \), and the spatial spectrum of MUSIC is given by

\[P(\theta) = \frac{1}{a(\theta)^H E_N E_N^H a(\theta)} \]

3. Doppler Effect and Compensation

The orthogonally among subcarriers is often destroyed by the CFOs due to oscillator mismatches. So Doppler effect was generated and degrades performance. Doppler effects cause shifting in frequency domain and phase rotation in time domain.

Signal \(x(t) \) is like (7) due to Doppler effect.

\[y_n = \sum_{k=0}^{N-1} H_k \cdot X_k \cdot e^{j2\pi k + \varepsilon} + z_n \]

Signal \(x(t) \) is like (8) due to Doppler effect in time domain.

Channel \(H \) is represented as product of \(X \). Doppler effect is represented phase rotation in frequency domain. \(k, n, \varepsilon \) are sub-carrier, symbol, normalized Doppler frequency respectively in (7).

\[Y_p = \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} H_{k,n} \cdot X_{k,n} \cdot e^{j2\pi (k + \varepsilon)} + Z_p \]

\[= H_p \cdot e^{j2\pi p} + \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} H_{k,n} \cdot X_{k,n} \cdot e^{j2\pi (k + \varepsilon)} + Z_p \]

In (8), first stage is phase rotation and second stage is ICI. Where \(p \) is symbol in frequency domain and \(k, m \) are sub-carrier before IFFT in transmitter and sample before FFT in receiver. Phase rotation of Doppler is different per symbol and ICI is generated when one sub-carrier affects other sub-carriers.
Normalized offset value is divided by carrier spacing. We consider direction of receiver is heading toward to transmitter.

\[
\varepsilon = \frac{f_d}{\text{carrier spacing}}, \quad f_d = \frac{v \cdot f_c}{c}
\]

(9)

In this system, we compensate those problems with synchronization signal and block type pilot and assume that the receiver speed is constant. \(f_d, c, v\) are Doppler frequency, the velocity of light, the speed of receiver respectively.

The problem of Doppler effect is compensated with block type pilot. The phase rotation is estimated by doing interpolation between pilots, because the receiver speed is not dramatically changed.

\[
Y_p = H_p \cdot X_p e^{j2\pi f_p} + Z_p
\]

(10)

Phase rotation is estimated using received pilot signals.

\[
P(i) = \sum_{i=1}^{N} \text{mean} \left\{ \sum_{n=1}^{64} \text{Block} _ \text{Pilot}(i + n - 1) \right\}
\]

(11)

\[
\frac{\text{angle}\{P(i)\} - \text{angle}\{P(i+1)\}}{\text{pilot} _ \text{interval}} \times ([1: \text{pilot} _ \text{interval} - 1])
\]

(12)

\(P\) is average of block type pilot. Eq. (12) represents linear interpolation using \(P\), so the symbols that have not pilots is estimated. But if there is too long pilot interval or Doppler frequency, it is difficult to compensate the effect.

4. Proposed Bandpass Sampling

4.1. Existing Method

Existing multi-band system with bandpass sampling finds sampling frequency that doesn’t overlap signals between multi-band signals according to (7). But to select multi-band signals respectively, RF filter is used. Although RF filter has good Q value, the RF filter can’t remove all adjacent signals. So the remaining adjacent signal is able to be overlap when multi-band signals are converted at low frequency band.

![Figure 2. System Model Problem when Signals are Sub-Sampled from RF Band](image-url)
Bandpass sampling about multi-band of over 2 bands meet condition like (13) [7]. To convert the two signals in low frequency band without interference between signals, $F_{IF,A}$ and $F_{IF,B}$ have to meet (13).

$$
0 < F_{IF,A} - BW_A / 2, \quad F_s > F_{IF,A} - BW_A / 2
$$
$$
0 < F_{IF,B} - BW_B / 2, \quad F_s > F_{IF,B} - BW_B / 2
$$
if $F_{IF,B} > F_{IF,A}$

$$
F_{IF,B} - BW_B / 2 > F_{IF,A} + BW_A / 2
$$
if $F_{IF,A} > F_{IF,B}$

$$
F_{IF,A} - BW_A / 2 > F_{IF,B} + BW_B / 2
$$

(13)

First, the signals that are converted in low frequency band are large than 0 and smaller than $Fs/2$ respectively. Second, the low frequency part of $F_{IF,A}$ is larger than the high frequency part of $F_{IF,B}$ ($F_{IF,B} < F_{IF,A}$) or, the low frequency part of $F_{IF,B}$ ($F_{IF,B} > F_{IF,A}$) is larger than the high frequency part of $F_{IF,A}$ ($F_{IF,B} > F_{IF,A}$).

4.2. Proposed Structure

We propose a method that adds TDM method in bandpass sampling method.

Figure 3. Multi-band Receiver Structure with Joint sub-sampling and TDM Method

$$
0 < F_{IF,A} - BW_A / 2, \quad F_s > F_{IF,A} - BW_A / 2
$$
$$
0 < F_{IF,B} - BW_B / 2, \quad F_s > F_{IF,B} - BW_B / 2
$$

(14)

The proposed structure is given as Figure 3. Multi-band signals are received with antennas and the signals pass through LNA. Afterward, the multi-band signals are divided into two signals by filter. And each signal is sampled as two times faster than the existing bandpass sampling frequency. At Sampling & Holder and ADC, TDM and bandpass sampling are performed at the same time. The signals that are received with TDM have no interference between receiving singles because the signals is divided in time. Therefore, the converted signals just satisfy (14) instead of (13). So it is possible to give an low sampling frequency.
5. Simulation and Discussion

Table 1. Simulation Parameters

<table>
<thead>
<tr>
<th>OFDM system</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of Subcarriers</td>
<td>64</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>20MHz</td>
</tr>
<tr>
<td>Symbol Period</td>
<td>4 µs</td>
</tr>
<tr>
<td>Subcarrier Spacing</td>
<td>312.5KHz</td>
</tr>
<tr>
<td>CP Length</td>
<td>0.8 µs</td>
</tr>
<tr>
<td>Modulation</td>
<td>4-QAM</td>
</tr>
<tr>
<td>Channel</td>
<td>AWGN</td>
</tr>
<tr>
<td>Target A azimuth</td>
<td>10°</td>
</tr>
<tr>
<td>Target B azimuth</td>
<td>50°</td>
</tr>
</tbody>
</table>

Simulation environment is showed in Table 1. Figure 4 indicates BER performance when Doppler effect occurs. We can see the performance according to Doppler scale. The two bands have no difference according to Doppler scale. The two bands have no difference due to TDM. In the case of Doppler effect ε =0.01, for that both A band and B band without compensating, we can’t communicate because of the phase rotation. And after compensating phase rotation, there is small performance degradation comparing to the theory curve because of existing ICI. And when the Doppler Effect is give ε=0.05, we can’t communicate as we use block type pilot and do linear interpolation which is difficult to estimate fast phase rotation.

Figure 5 shows spatial spectrum of MUSIC with 4 receiver antenna arrays due to different SNRs. We can see that both target A and target B are tracked with accurate angle whose are 10° and 50°. And we can also see that more higher the SNR is, the shaper the spectrum pointing the angle performances.
Figure 6 show that MUSIC spectrum performance due to different array antenna numbers under the same SNR environment. And we can see that the more array antenna number is, the more accurately the system can separate the signals which performances as a sharper spectrum.
6. Conclusion

In this paper, we discussed and performance a automatic AOA tracking method using MUSIC algorithm by bandpass sampling method. And we also proposed an adding TDM with bandpass sampling method which can avoid interference. By considering the Doppler effect and compensating the effect, system using proposed method performances well. And simulation shows using MUSIC algorithm to estimate the AOA under different conditions.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2012017339).

References

Authors

Xin Wang was born in Shandong, China. He received his B.S degree from Department of Electronic Engineering, Chungbuk National University, Korea in 2012. He is currently working toward the M.S degree in Department of Electronic Engineering, Chungbuk National University, Korea. His research interests include OFDM communication systems, wireless communication system, and smart antenna techniques.
Heung-Gyoon Ryu (M’88) was born in Seoul, Republic of Korea in 1959. He received the B.S. and M.S. and Ph.D. degrees in electronic engineering from Seoul National University in 1982, 1984 and 1989. Since 1988, he has been with Chungbuk National University, Korea, where he is currently Professor of Department of Electrical, Electronic and Computer Engineering in Chungbuk National University. And he worked as Chief of RICIC (research institute of computer, information communication center) in Chungbuk National University from March 2002 to February 2004. His main research interests are digital communication systems, communication circuit design, spread spectrum system and communication signal processing. Since 1999, he has worked as reviewer of the IEEE transaction paper. He was a winner of ‘2002 ACADEMY AWARD’ from the Korea Electromagnetic Engineering Society, Korea. He received the “BEST PAPER AWARD” at the 4th International Conference on Wireless Mobile Communications (ICWMC 2008) Athens, Greece, July 27-August 1, 2008. Also, He received the “BEST PAPER AWARD” at the International Conference on Advances in Satellite and Space Communications (SPACOMM 2009), Colmar France, July 20-25, 2009.