A Conference Key Distribution Scheme Using Interpolating Polynomials

Chin-Chen Chang¹, Chu-Hsing Lin² and Chien-Yuan Chen³
¹Department of Information Engineering and Computer Science, Feng Chia University, 407 Taichung, Taiwan
e-mail: ccc@cs.ccu.edu.tw
²Department of Computer Science and Information Engineering, Tunghai University, 407 Taichung, Taiwan
e-mail: chlin@thu.edu.tw
³Department of Information Engineering, No.1, Sec. 1, Syuecheng Rd., Dashu Township, 840 Kaohsiung County, Taiwan
e-mail: cychen@isu.edu.tw

Abstract

Conference keys are secret keys used by a group of users commonly and with which they can encipher (or decipher) messages such that communications are secure. Based on the Diffie and Hellman’s PKDS, a conference key distribution scheme is presented in this paper. A sealed lock is used to lock the conference key in such a way that only the private keys of the invited members are matched. Then the sealed lock is thus made public or distributed to all the users, only legitimate users can disclose it and obtain the conference key. In our scheme, the construction of a sealed lock is simple and the revelation of a conference key is efficient as well.

1. Introduction

In the age of computers and communications people in different places far away from each other can have a secure conference just by sitting in the front of their own computers via the Internet. A common key, called a conference key, is used to encrypt and decrypt messages which communicate among members participating in the conference. Before a conference is to be held, a conference key has to be generated and distributed safely to members in the conference. The main problem is how this conference key is packed and distributed in such a way that only the legitimate (invited) members can disclose it.

In this paper, we propose a conference key distribution system suitable for broadcast channel. A broadcast channel is characterized that a single transmission from a source user may be received simultaneously by many destination users. The concept of locking, called a sealed lock [15], is used to lock a secret conference key, from which only legitimate users can open it. There is no constraint on the structure of user stations in our system. Moreover, the proposed system has the following properties. First, for a subgroup of users, only one common secret key is required. Second, the conference key can be changed randomly without changing a ciphering key of any user.

The proposed scheme is based on the Diffie and Hellman’s PKDS [5]. The construction of a sealed lock is straightforward and the revelation of a conference key is simple. In Section 2, we present a brief review of a conference key distribution scheme. Section 3 will describe the overview of our approach and give an example. In Section 4, we analyze the security of the
proposed scheme. According to our analysis, the conference key distribution scheme is presented in Section 5. Finally, we have a conclusion.

2. Conference Key Distribution

Diffie and Hellman proposed a public key distribution system (PKDS) based on the one-way function \(F(X) = Z^X \mod p \), where \(p \) is a large prime number and \(Z \) is a primitive element in Galois field \(GF(p) \). Here a one-way function means that there exists a fast algorithm for computing \(F(X) \) from any given \(X \); however, the computation of \(X \) from \(F(X) \) is infeasible within a reasonable time limitation [4]. Their PKDS works as follows. Users A and B choose randomly the integers \(X_a \) and \(X_b \), respectively, from numbers in the range \([1, p-1]\). Users A and B keep secretly \(X_a \) and \(X_b \) and compute the corresponding public keys \(Y_a \) and \(Y_b \):

\[
Y_a = (Z)^{X_a} \mod p , \quad \text{and} \\
Y_b = (Z)^{X_b} \mod p
\] \hspace{1cm} (2.1)

\(Y_a \) and \(Y_b \) are placed in a public directory or interchanged between users A and B. Then users A and B can compute their common secret key \(K_{ab} \) and follows:

\[
K_{ab} = (Y_a)^{X_b} \mod p, \\
= (Z)^{X_aX_b} \mod p, \\
= (Y_b)^{X_a} \mod p .
\] \hspace{1cm} (2.2)

This enables users A and B to communicate using encrypted messages by applying any cryptosystem with the key \(K_{ab} \).

We can see that it is very straightforward to compute the common key \(K_{ab} \). Each user needs at most \(\log_2 p \) multiplications over \(GF(p) \). On the contrary, if user A (or user B) intends to expose the private key \(X_b \) (or \(X_a \)) of his partner, he has to compute discrete logarithms. From the result of Pohlig and Hellman [17], computing discrete logarithms over \(GF(p) \) is considered to be a rather difficult problem if \(p-1 \) has at least one large prime factor. Therefore, Eq(2.1) is a one-way function on which the PKDS based.

However, PKDS can serve only for two users to have a session key. If three or more users want to have a conference in common, a conference key is needed, each pair of the users have to keep one secret key. Therefore, in order to communicate with each other among any subgroup of users in the system, we need to derive a common secret key. In addition, for communicating a message to several users, the sender has to perform different encryptions and transmit the ciphertexts several times separately. Clearly, it is very inefficient to use this approach for a conference.

To overcome the above problems, Ingemarsson, Tang, and Wong [8] proposed an elegant scheme named conference key distribution system (CKDS) for any subgroup of \(m \) users to share the same encryption and decryption keys in a network with \(n \) users, where \(2 \leq m \leq n \). Conditionally, these \(m \) participants users have to be connected in a ring structure first before the progress of work follows. Within the ring structure, each user has to process and transmit the message received from his previous user station. Under this sequential order of message processing \(m-1 \) times, and finally the common conference key can be derived. However, an attacker may intercept the message transmitted along the ring. By putting the intercepted message together, a threat of wiretapping to the keys thus exists.
Generally, the CKDS can be classified into two categories: one is the non-ID-based type [3, 8, 13, 16, 19] and the other is the ID-based type [2, 14, 11, 12]. Unfortunately, most of the published ID-based CKDS are shown to be insecure [11, 12, 18, 20]. Therefore, in this paper, we focus our attention on the non-ID-based CKDS. In the following, we are going to review a practical non-ID-based CKDS [16].

In 1988, Lu, et al. [16] proposed a conference key distribution system based on the Lagrange interpolating polynomial. Let us briefly describe their method as follows. As indicated in Diffie and Hellman’s PKDS, each user possesses a private key X_i and makes the key Y_i public. Now we assume that there are r users, namely U_1, U_2, \ldots, U_r, being invited to the conference by the chairman U_0. First, a conference key α is chosen by U_0 and $2r$ numbers are computed, which are $\{K_{01}, K_{02}, \ldots, K_{0r}\}$ and $\{K'_{01}, K'_{02}, \ldots, K'_{0r}\}$, such that $K_{0i} = (Y_i)^{X_0} \mod p = (Y_0)^{X_i} \mod p$, for $1 \leq i \leq r$.

Secondly, U_0 constructs a Lagrange interpolating polynomial $L(X)$ as follows.

$$L(X) = \sum_{i=1}^{r} \alpha K'_{0i} \prod_{j=1}^{r} ((X-K_{0j})/(K_{0i}-K_{0j})) \mod p \quad (2.3)$$

In other words, $L(X)$ is a polynomial with degree $r-1$ passing the r points $(K_{0i}, \alpha K'_{0i})$, $1 \leq i \leq r$. Then $L(X)$ is transmitted to users participating in the conference. Now the conference key α is hidden in $L(X)$. Here we also like to point out that from Diffie and Hellman’s formula, Eq(2.2), we have $K_{0i} = (Y_i)^{X_0} \mod p = (Y_0)^{X_i} \mod p$. Therefore, on receiving $L(X)$, an invited user U_i can evaluate the polynomial $L(K_{0i})$ and would obtain the value $\alpha K'_{0i}$; i.e., he obtain $L(K_{0i}) = \alpha K'_{0i}$. Furthermore, he can obtain the conference key by the following.

$$\alpha = (\alpha K'_{0i}) \times (K'_{0i})^{-1} \mod p$$

$$= L(K_{0i}) \times (K'_{0i})^{-1} \mod p \quad (2.4)$$

Where $(K'_{0i})^{-1}$ indicates the multiplication inverse of (K'_{0i}) with modulus p. However, each time when a conference is to be held, a Lagrange interpolating polynomial has to be constructed. Moreover, every invited user must evaluate $L(X)$ to obtain conference key α.

In the next section, we present a new conference key distribution scheme. By using our scheme, interpolating polynomials are constructed just once and for all.

3. Background of Our Scheme

Imagine that there is a group G containing $n+1$ users, denoted by $U_0, U_1, U_2, \ldots, U_n$, in a networking system. Let G' indicate a nonempty subgroup of m users within G, where $1 \leq m \leq n$. Suppose that, initially, each user U_i keeps secret a private key X_i, chosen randomly by U_i from numbers in the range $[1, p-1]$, where p is a large prime number, and publishes the associated public key $Y_i = (Z)^{X_i} \mod p$, where Z is a primitive element in the $\text{GF}(p)$, where $\text{GF}(p)$ indicates the Galois field over p. Without loss of generality, assume that U_0 is the chairman and U_1, U_2, \ldots, U_r are users invited to the conference; i.e., $G'=\{U_1, U_2, \ldots, U_r\}$. In order to hold a secure conference among the users in G', a secret conference key, denoted by α, has to be created by the chairman for the conference. Note that α is also chosen in $\text{GF}(p)$.

We can see that if there is a secure method which can conceal the conference key α then the corrs of the conference key distribution system can be solved. Since the conference key is enciphered, only one copy is needed to be sent in a broadcast system. Further, since the
conference key is generated when a conference is going to be held, no extra key has to be kept in secret. Based upon these ideas, a new approach is proposed. A lock, called the sealed lock, is created and applied to lock the conference key. Note that the concept of a sealed lock for conference key distribution was proposed by Lin, et al. [15]. The sealed lock only matches the private keys of users in G’.

Accordingly, we may assume that the conference key is hidden in the sealed lock and the lock satisfies two requirements. First, since only users in G’ are invited, the lock should be opened only by the users in G’, not any user in G-G’. Second, the lock should be variant according to different conference key \(\alpha\). That is, each time we use different lock depending on different conference key. Briefly, a sealed lock has to rest functionally on not only the conference key \(\alpha\) but also the ciphering keys of users.

Now, the remaining problem is how we can construct the sealed lock. Before presenting the method, let us describe the informal steps of the scheme. First, \(U_0\) chooses a \(n \times n\) nonsingular matrix over GF(p). Let the row vectors of K be \(K_1, K_2, \ldots, K_n\). Let \(B=(b_1, b_2, \ldots, b_n)^T\), where \(b_i\)'s are unknowns to be determined and \(T\) indicates a transpose operation on vectors. Let \(C=(c_1, c_2, \ldots, c_n)^T\), where \(c_i=\alpha\) if user \(U_i\) in G’; otherwise, \(c_i=0\). Since the \(n\) row vectors of K are linearly independent, they constitute a basis [6]. Therefore, corresponding to any \(n\)-tuple vector \(C=(c_1, c_2, \ldots, c_n)^T\), a unique coordinate vector \(B=(b_1, b_2, \ldots, b_n)^T\), for representing \(C\) in the basis, can be found by solving the following linear equations:

\[
KB=C, \quad (3.1)
\]

or equivalently \(B=K^{-1}C\), \(K^{-1}\) indicates the inverse matrix of K. From another point of view, it means that when the coordinate vector \(B\) is obtained, \(i\) th component (i.e., \(c_i\)) of the vector \(C\) becomes the result of \(K_i*B\), where * indicates the vector product in GF(p). That is \(K_i*B =c_i=\alpha\), if \(U_i\) is in G’; otherwise \(K_i*B=0\).

From the above statements, it is not difficult to see that if the chosen row vector \(K_i\) could be possessed by user \(U_i\) and the vector \(B\) were made public, then each user \(U_i\) would be able to compute the value \(c_i\) by himself (or herself). Thus, the invited users would obtain \(c_i=\alpha\), the conference key; and the uninvited users would obtain \(c_i=0\). However, how can we distribute \(K_i\) to user \(U_i\) securely? In the following, we give a method to conceal the matrix K in such a way that only user \(U_i\) can reveal the corresponding \(i\) th row vector \(K_i\).

First, for each column of the matrix K, namely column \(j\), we construct an interpolating polynomial \(F_j\) [1, 9, 10] with degree \(n-1\) passing through the \(n\) points (\(ID_i, (k_{ij})^p \mod Q\), \(1 \leq i \leq n\). Here \(ID_i\) indicates the identification number of user \(U_i\) and \(Q=q_1 \times q_2\) is the product of two large prime numbers. Note that as aforementioned we assume that user \(U_0\) is the chairman and only users \(U_1, U_2, \ldots, \) and \(U_n\) are invited to the conference. Moreover, for each column of the matrix K, e.g. the \(j\) th column, we construct another interpolating polynomial, namely \(H_j\), with degree \(n-1\) passing through the \(n\) points (\(ID_i, (k_{ij})^{(Y_i)^p \mod p} \mod Q\), \(1 \leq i \leq n\). The construction steps of an interpolating polynomial, one can consult [1, 9, 10]. Therefore, we obtain a set of \(2n\) polynomials, namely \(F=\{F_1, F_2, \ldots, F_n, H_1, H_2, \ldots, H_n\}\). Finally, the set F of polynomials are made public by the chairman to all the users in the system.

Now, when the user \(U_s\), with identification \(ID_s\), reads the set F of polynomials, he (or she) can evaluate the values of polynomials \(F_i(ID_s)\) for \(1 \leq i \leq n\). We can see that the result will be as indicated below:
Similarly, he can also evaluate the results of polynomials \(H_i(IDs) \) and has the following equalities

\[
F_1(ID_s) = k_{s_1}^p \mod Q, \\
F_2(ID_s) = k_{s_2}^p \mod Q, \\
\vdots \\
F_n(ID_s) = k_{s_n}^p \mod Q. \tag{3.2}
\]

Similarly, he can also evaluate the results of polynomials \(H_i(IDs) \) and has the following equalities

\[
H_1(ID_s) = k_{s_1}^{y_0 \mod p} \mod Q, \\
H_2(ID_s) = k_{s_2}^{y_0 \mod p} \mod Q, \\
\vdots \\
H_n(ID_s) = k_{s_n}^{y_0 \mod p} \mod Q. \tag{3.3}
\]

It has \((Y_s)^{X_0 \mod p} = (Y_0)^{X_s \mod p}\) and Eq(3.3) becomes:

\[
H_1(ID_s) = k_{s_1}^{y_0 \mod p} \mod Q, \\
H_2(ID_s) = k_{s_2}^{y_0 \mod p} \mod Q, \\
H_n(ID_s) = k_{s_n}^{y_0 \mod p} \mod Q. \tag{3.4}
\]

Further, the key point is that how can the user \(U_s \) deduce the corresponding row vector \(K_s \) by knowing Eq(3.2) and Eq(3.4). The answer will become clear when Theorem 3.1 is proved.

Theorem 3.1

Given \(b_1, b_2, e_1, \) and \(e_2 \) such that \(b_1 = b^{e_1 \mod n} \) and \(b_2 = b^{e_2 \mod n} \), where \(b < n \). Then \(b_r \mod n \) can be easily computed if \(\gcd(e_1, e_2) = r \).

Proof. Since \(\gcd(e_1, e_2) = r \), from Euclidean algorithm we can find a pair of \((s_1, s_2)\) such that \(s_1 e_1 + s_2 e_2 = r \). Therefore, we have

\[
b' \mod n = b^{(s_1 e_1 + s_2 e_2)} \mod n \\
= ((b^{e_1})^s_1 \mod n)((b^{e_2})^s_2 \mod n) \mod n \\
= ((b_1)^{s_1} \mod n)((b_2)^{s_2} \mod n) \mod n
\]

Since \(\gcd(p, (Y_0)^{X_s \mod p}) = 1 \), Theorem 3.1 (by letting \(r = 1 \)) can be applied to Eq(3.2) and Eq(3.4) for solving \(K_s = (k_{s_1}, k_{s_2}, \ldots, k_{s_n}) \). Moreover, with the obtained \(K_s \) the value \(c_s \) can be derived by computing \(K_s \cdot B = (k_{s_1}, k_{s_2}, \ldots, k_{s_n}) \cdot (b_1, b_2, \ldots, b_n) = c_s \). If the user \(U_s \) is in \(G' \) then \(c_s = a; \) otherwise, he would find that \(c_s = 0 \), no information associated with the conference key is revealed. It is easy to see that the sealed lock, the vector \(B \), satisfies the previous two requirements. Here we would like to point out that to open the sealed lock in the conference key distribution system, one’s private key, not any extra key, is needed. Moreover, the conference key can be changed in a convenient way within the conference. When a suspected attack is found, the chairman may change the conference key as he wishes.
Example 3.1

Let the group G contain four users, denoted by U_0, U_1, U_2, and U_3. Let p be 11 and a primitive element Z=2 in GF(p). Then, each user U_i keeps secret a private key X_i, chosen randomly by U_i from numbers in the range \([1, p-1]\) and publishes the public keys Y_i = Z^{X_i} \mod p. Let X_0=8, X_1=6, X_2=9, X_3=4, Y_0=9, Y_1=6, and Y_3=5. We also let ID_1=1, ID_2=2, and ID_3=3. Without loss of generality, assume that U_0 is the chairman and U_1 and U_2 are users being invited to the conference; i.e., G’={U_1, U_2}. In order to hold a secret conference key \(\alpha=7\) among the users in G’, the chairman executes the following steps:

1. The chairman chooses a 3×3 nonsingular matrix over GF(11) as

\[
K = \begin{bmatrix}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\
2 & 1 & 6 \\
7 & 5 & 3
\end{bmatrix}
\]

and computes the inverse \(K^{-1}\) of K

\[
K^{-1} = \begin{bmatrix} 5 & 2 & 2 \\
8 & 7 & 0 \\
8 & 2 & 3
\end{bmatrix}
\]

2. The conference key \(\alpha=7\), he generates the vector \(C=(c_1, c_2, c_3)^T\), where \(c_i=\alpha\) if \(U_i\) is in \(G’\); otherwise, \(c_i=0\). So, \(C=(7, 7, 0)\).

3. The vector B is generated by

\[
B = \begin{bmatrix} 5 & 2 & 2 \\
8 & 7 & 0 \\
8 & 2 & 3
\end{bmatrix} = \begin{bmatrix} 5 \\
6 \\
4
\end{bmatrix}
\]

(All values are over GF(11).)

4. Selecting \(Q=23 \times 29=667\) and \(P=673\), the chairman can construct six interpolating polynomials \(F_1, F_2, F_3, H_1, H_2,\) and \(H_3\). According to the construction of the three points \((ID_1, K_{1i}^p \mod Q), (ID_2, K_{2i}^p \mod Q),\) and \((ID_3, K_{3i}^p \mod Q)\), which are \((1, 1), (2, 47),\) and \((3, 574),\) is \(577x^2-339x+436 \mod 673\). Similarly, we have \(F_2(x)=554x^2-362x+528 \mod 673\) and \(F_3(x)=650x^2-581x+323 \mod 673\). In addition, polynomial \(H_i\) can be constructed. The polynomial \(H_1(x)\), passing through the three points \((1, 1), (2, 16),\) and \((3, 400),\) is \(521x^2-202x+355 \mod 673\). Similarly, we have

\(H_2(x)=652x^2-617x+646 \mod 673\) and \(H_3(x)=98x^2-365x-379 \mod 673\).

5. Publish the set \(F=\{F_1, F_2, F_3, H_1, H_2, H_3\}, Q,\) and B to all the users in G.

Each user \(U_i,\) say \(U_2,\) in the group \(G’\) can reveal the conference key as follows:

1. Compute \(F_l(ID_2)=47, F_2(ID_2)=1, F_3(ID_2)=415, H_1(ID_2)=16, H_2(ID_2)=1,\) and \(H_3(ID_2)=629.\)

Because \(p (=11)\) is coprime to \(Y_0^X: \mod p (= 4),\) we have \((-1) \cdot 11 + 3 \cdot 4 = 1.\) Therefore, the 2nd row vector of matrix K, namely \(K_2=(k_{21}, k_{22}, k_{23}),\) can be computed by the following expressions:
Reveal the conference key
\[\alpha = K_2 \ast B \mod p = \begin{bmatrix} 5 \\ 6 \\ 4 \\ \end{bmatrix} \mod 11 = 7 \]

4. Security Consideration

In this section, we shall discuss the security of the proposed scheme.

In the following, attacks to conference key and the personal private keys, are considered to demonstrate the security of the system. First, an intruder, namely \(U_j \), not in \(G' \), may try to find the conference key \(\alpha \). Since \(U_j \) is not in \(G' \), he will find \(c_j = 0 \). Not any information from the lock he can get about the conference key. Secondly, the intruder may be a member in \(G' \) itself. After knowing the conference key \(\alpha \), he tries to obtain a private key \(X_s \) of some other user \(U_s \) in \(G' \). With this private key \(X_s \), he can decrypt the messages for \(U_i \) from another conference in which he does not participate. Form Eq\((3.2) \) and Eq\((3.4) \), we know that the intruder can compute \(2n \) pairs of numbers \(F_i(ID_s) \) and \(H_i(ID_s) \), \(1 \leq i \leq n \). By knowing these \(2n \) pairs, to solve each \(k_{si} \) by the Theorem 3.1, the value of \((Y_0)^{X_s} \mod p \) has to be known in advance. On the other hand, if the value of \((Y_0)^{X_s} \mod p \) is known, it has still to face the discrete logarithm problem to get \(X_s \). However, computing discrete logarithm has been seen as a difficult problem as aforementioned.

It will be not difficult to see that the chairman only as to publish the set \(F \) of interpolating polynomials to all the users just once and for all. On the other hand, a legitimate user can obtain the row vector corresponding to him by using his ID number and his private key. Further the conference key can thus be computed easily. Moreover, when different subgroup of users in group \(G \) are invited to hold a different conference, all what the chairman has to do is compute a new vector \(B \) and publish it. With this new vector \(B \) and the previously published set \(F \), new conference for another subgroup of users can be started. Besides, if unfortunately the conference key \(\alpha \) is suspected to be under attack. The chairman can compute a new conference key \(\alpha' \) just by replacing the old vector \(B \) with a new vector \(B' \) within the same conference without any modification to the set \(F \). Nevertheless, one disadvantage is that the original matrix \(K^{-1} \) has to be kept secretly by the chairman. For security consideration, we suggest that matrix \(K^{-1} \) would be discarded after being transformed to the following two matrices, where \(s_1, s_2, \ldots, s_n \) are some integers in \(\text{GF}(p) \). Note that the chairman can reconstruct the original matrix \(K \) from \(\hat{K} \) and \(\tilde{K} \) in the same way when needed.

\[
\hat{K} = \begin{bmatrix}
K_{11}^p \mod Q & K_{12}^p \mod Q & \ldots & K_{1n}^p \mod Q \\
K_{21}^p \mod Q & K_{22}^p \mod Q & \ldots & K_{2n}^p \mod Q \\
\vdots & \vdots & \ddots & \vdots \\
K_{s1}^p \mod Q & K_{s2}^p \mod Q & \ldots & K_{sn}^p \mod Q
\end{bmatrix}
\]

\[
\tilde{K} = \begin{bmatrix}
K_{11}^p \mod Q & K_{12}^p \mod Q & \ldots & K_{1n}^p \mod Q \\
K_{21}^p \mod Q & K_{22}^p \mod Q & \ldots & K_{2n}^p \mod Q \\
\vdots & \vdots & \ddots & \vdots \\
K_{s1}^p \mod Q & K_{s2}^p \mod Q & \ldots & K_{sn}^p \mod Q
\end{bmatrix}
\]
According to the previous section, the user U_i is a legal participant in conference j. The intruder can store B_j sent by the chairman and know that the corresponding c_j is 0. He continues to store such B's until he obtains a subset $\{B_{j1}, B_{j2}, \ldots, B_{jn-1}\}$ of these B's that form a matrix of rank $n-1$. If the intruder is ever involved in a conference, say the jnth conference, with user U_i, he will know α_{jn} and the B_{jn}. Now he has a matrix $\tilde{B} = [B_{j1}, B_{j2}, \ldots, B_{jn}]$. Because the system uses the same matrix K over and over again, the intruder can recover row K_i by solving the equation $K_i \cdot \tilde{B} = [0, 0, \ldots, \alpha_{jn}]$. Using K_i, the intruder can find all conference keys for conferences in which user U_i participated. Second attack like first one is also to recover row K_i of the user U_i. If the intruder is ever involved in conferences j_1, j_2, \ldots, j_n with user U_i, he will know $\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_n}$ and $\beta_{j_1}, \beta_{j_2}, \ldots, \beta_{j_n}$ sent for these conference. Now he has a matrix $\tilde{B} = [B_{j1}, B_{j2}, \ldots, B_{jn}]$. Because the system uses the same matrix K over and over again, the intruder can recover row K_i by solving the equation $K_i \cdot \tilde{B} = [\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_n}]$.

To eliminate these attacks, a modified system will be presented in the next section.

5. The Proposed Scheme

Let each user U_i have a private key X_i and a public key Y_i as indicated in Diffie and Hellman’s PKDS. Now, if a nonempty subgroup G' of users, with some user U_0 as the chairman, will hold a conference securely. We assume that an $n \times n$ nonsingular matrix K over $GF(p)$ has been generated by chairman. First, the user U_0 selects a secret conference key α which will be used to encrypt and decrypt message among users in G'. To avoid two attacks mentioned in Section 4, let C be $(c_1, c_2, \ldots, c_n)^T$, where $c_i = \alpha((Y_i)^{X_i} \mod p)$ if U_i is in G'; otherwise, c_i is a random number such that $c_i \neq \alpha((Y_i)^{X_i} \mod p)$. Then the user U_0 compute a vector B by solving Eq(3.1) as mentioned previously and makes it public to all the users in the system. Further, U_0 computes and publishes a set of $2n$ interpolating polynomials $F=\{F_1, F_2, \ldots, F_n, H_1, H_2, \ldots, H_n\}$ in which the matrix K is concealed. On the other hand, on receiving of F, the user U_s should be able to compute $2n$ pairs of numbers $F_i(ID_s)$ and $H_i(ID_s)$, $1 \leq i \leq n$. If the users U_s is in G', an invited user, then by applying Theorem 3.1 he (or she) is capable of obtaining the row vector K_s corresponding him (or her). Therefore, collecting K_s and B, the user U_s can thus compute the conference key by

$$(K_s \cdot B)((Y_i)^{X_0} \mod p)^{-1} = c_s((Y_i)^{X_s} \mod p)^{-1} = \alpha.$$
Otherwise, when the user U_s is not in G', he can only compute $(K_s \ast B)((Y_i)^{X_s} \mod p)^{-1} = c_s((Y_i)^{X_s} \mod p)^{-1} \neq \alpha$. In the following, let us state formally the algorithm for the conference key distribution scheme.

Algorithm 5.1: System Generation for the Chairman

Input: All of the identification numbers ID_i's and the public key Y_i for users in G' and a prime number p.

Output: A set F of $2n$ interpolating polynomials and a number Q.

Step 1: [Construct an $n \times n$ matrix]

Construct a nonsingular matrix $K = [k_{ij}]_{n \times n}$.

Step 2: [Construct n interpolating polynomials F_j's]

For $j = 1$ to n

Compute F_j passing through the n points $(ID_v, (K_{v,j}) \mod Q)$'s, $1 \leq v \leq n$ and $Q = q_1q_2$, the product of two large primes.

Next j.

Step 3: [Construct n interpolating polynomials H_j's]

For $j = 1$ to n

Compute F_j passing through the n points $(ID_v, (K_{v,j}^{(Y_i)^{X_v}} \mod p) \mod Q)$'s, $1 \leq v \leq n$ and $Q = q_1q_2$.

Next j.

Step 4: [Distribute the polynomials]

Publish or distribute the set $F = \{F_1, F_2, \ldots, F_n, H_1, H_2, \ldots, H_n\}$ and Q to all users in G.

Algorithm 5.2: Constructing a Sealed Lock

Input: The nonsingular matrix K and a subgroup of users.

Output: A sealed lock B.

Step 1: [Select a conference key for users in G']

Select a conference key α. Let vector $C = (c_1, c_2, \ldots, c_n)^T$, where $c_j = \alpha((Y_i)^{X_i} \mod p)$ if U_i is in G'; otherwise, c_i is a random number such that $c_i \neq \alpha((Y_i)^{X_i} \mod p)$.

Step 2: [Find a vector B]

Compute the vector $B = K^{-1}C$. Let $B = (b_1, b_2, \ldots, b_n)^T$ and publish it.

Step 3: [Distribute the sealed lock]

Distribute B to all the users in the system.

Note that as indicated in the above algorithm, the vector B is used as sealed lock in which the conference key α is hidden. Now for any user U_i in G', he can reveal the conference key.
from the set F and the vector B by using his own private key X_i. The revealing procedure is described as follows.

Algorithm 5.3: Revealing the Conference Key

Input: The set F, vector B, ID_s, Y_0, p, Q, and the private key X_s of the user U_s.

Output: The conference key α.

Step 1: [Evaluate polynomial F_j’s]

For $j = 1$ to n

Compute $F_j(ID_s)$.

Next j.

Step 2: [Evaluate polynomial H_j’s]

For $j = 1$ to n

Compute $H_j(ID_s)$.

Next j.

Step 3: [Obtain the s^{th} row vector of matrix K, namely K_s]

For $i = 1$ to n

Compute the i^{th} component of K_s, namely k_{si}, by Theorem 3.1.

Next i.

Step 4: [Reveal the conference key]

Compute the conference key by $\alpha = (K_s * B)((Y_0)^{X_i} \mod p)^{-1}$.

After all users in G' obtain the secret key α, everyone can communicate with the others as he wishes. Messages are encrypted and decrypted by using the key α and a conference will proceed securely among the users. The key α may be generated at the beginning of the conference by the chairman and discarded when the conference is closed or it may be changed randomly within the period of time of this conference. From the above algorithm, in order to compute α, a user U_s in G' only has to reveal the vector K_s by using his own private key X_s. Therefore, for conferences among users in any nonempty subgroup of G, the private keys needed to be kept by each user in the system are still the same.

6. Conclusions

It can be foreseen that teleconferencing will play a more and more important role in the age of computers and communications. However, the key issue is how we can design a convenient and secure way for conferencing by using our computers and communication networks. In this paper, we have proposed a method to compute a sealed lock by communicating the encrypted messages among users in the computer networks. By using the sealed lock, secure distribution of a conference key to all the station nodes is feasible in the network systems.
7. Acknowledgement

This work was supported in part by Taiwan Information Security Center (TWISC), National Science Council under the grants NSC 95-2218-E-001-001, NSC95-2218-E-011-015 and NSC95-2221-E-029-020-MY3.

8. References

Authors

Chin-Chen Chang
Chin-Chen Chang received his BS degree in applied mathematics in 1977 and the MS degree in computer and decision sciences in 1979, both from the National Tsing Hua University, Hsinchu, Taiwan. He received his Ph.D in computer engineering in 1982 from the National Chiao Tung University, Hsinchu, Taiwan. During the academic years of 1980-1983, he was on the faculty of the Department of Computer Engineering at the National Chiao Tung University. From 1983-1989, he was on the faculty of the Institute of Applied Mathematics, National Chung Hsing University, Taichung, Taiwan. From August 1989 to July 1992, he was the head of, and a professor in, the Institute of Computer Science and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan. From August 1992 to July 1995, he was the dean of the college of Engineering at the same university. From August 1995 to October 1997, he was the provost at the National Chung Cheng University. From September 1996 to October 1997, Dr. Chang was the Acting President at the National Chung Cheng University. From July 1998 to June 2000, he was the director of Advisory Office of the Ministry of Education of the R.O.C. From 2002 to 2005, he was a Chair Professor of National Chung Cheng University. Since February 2005, he has been a Chair Professor of Feng Chia University. In addition, he has served as a consultant to several research institutes and government departments. His current research interests include database design, computer cryptography, image compression and data structures.

Chu-Hsing Lin
Chu-Hsing Lin received both of his B.S. and M.S. degrees in applied mathematics from National Tsing Hua University in 1980 and National Chung Hsing University in 1987, respectively. After two-year compulsory army service and two-year programmer life in industry, he received his Ph.D. degree in computer sciences from National Tsing Hua University, Taiwan, in 1991. Since then he has been a faculty of the Department of Computer Science and Information Engineering, Tunghai University. Dr. Lin is currently a professor and the chair of the CSIE department of Tunghai University. From 1995 to 1999, he has ever been the Director of the Computer Center of Tunghai. He has also been one of the Board Directors of the Chinese Information Security Association (CCISA) from 2001 till now. Dr. Lin has published over 50 papers in academic journals and international conferences. He has received over twenty project grants from government departments and private companies in recent years. In 2006, he was awarded the Outstanding Instructor Award of Master & Ph.D. Thesis by the IICM (Institute of Information & Computing Machinery). He was the winner of the 1991 Acer Long-Term Award for Ph.D. Dissertation. His current research interests include multimedia information security, wireless ad hoc networks, embedded systems applications.

Chien-Yuan Chen
Chien-Yuan Chen received his B.S. in computer and information science from the National Chiao Tung University, Hsinchu, Taiwan in 1987, his M.S. in computer science and information engineering from National Chung Cheng University, Chiayi, Taiwan in 1992, and his Ph.D. in computer and information science from the National Chiao Tung University, Hsinchu, Taiwan in 1996. From 1996 to 2007, he was with Department of Information Engineering, I-Shou University. Since Feb. 2007, he has been on the faculty of the Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan. His research interests include quantum computation and cryptography.