
International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015), pp. 79-90

http://dx.doi.org/10.14257/ijseia.2015.9.11.07

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2015 SERSC

Impact and Comparison of Programming Constructs on JAVA

and C# Source Code Readability

Aisha Batool
1
, Muhammad Habib ur Rehman

2
, Aihab Khan

1
, and Amsa Azeem

1

1
Department of Computing and Technology, Iqra University, Islamabad, Pakistan

2
Faculty of CS and IT, University of Malaya, Kuala Lumpur, Malaysia

1
aishabatool_omsats@yahoo.com,

2
mhrehman@siswa.um.edu.my,

1
aihabkhan@yahoo.com

Abstract

Software readability is a property that manipulates how easily a given piece of

code can be read and understood. Since readability can affect maintainability,

quality, reusability, understandability etc. Programmers are very concerned about

the readability of code. For the good decision of selecting languages, it is

necessary to know about the readability of languages. Many software constructs

may affect readability of code. In this paper we have selected some constructs that

affect readability property and we calculated their readability in C# and java PL.

At the end we have also compared results for both languages to make decision

easy for programmers to choose best one from both. Short snippets are taken from

c# and java and for their readability; five readability indexes are used to get

results.

Keywords: Code readability, programming constructs, Readability index,

Gunning fox index, SMOG

1. Introduction

Code readability is the capability of programming code that makes it readable and

understandable even for a nonprogrammer person [1], generally readability can be

calculated by the ratio between number of lines of code and the number of comments that

are for the understanding of human not for the computer. We may also say that if we can

understand a program without searching for declarations and definitions of that language

or the average rate of right answers about program in a specific time. It’s clearly seems

that readability is a attribute related to others,e.g., robustness, maintainability,

modifiability, complexity, understandability and reusability. Programming code that is

more [2] readable is less complex, more robust, more understandable, reusable,

modifiable [3, 4] and maintainable as well. Now a days software developer spend most of

the time on evolving nad maintaining existing code, rather than generating new one.

Readability is of significant importance and critical for software maintenance phase.

Reading the code is first step in software maintenance. In early as well as current

research, revealed that readability plays largest role in maintenance phase. The area of

programming readability has supreme importance in software development and whole

engineering process. Enough literature found on how to increase code readability, how to

calculate and measure source code readability, how to build analytical models, how

programming language’s readability [13] affects software cost and economy. In this

article we follow a different path; we explore the question of which constructs affect code

readability and which language from c# and java is better in terms of readability.

mailto:1mhrehman@siswa.um.edu.my
mailto:aihabkhan@yahoo.com

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

80 Copyright ⓒ 2015 SERSC

The main goal of this paper is to find programming features and their impact on source

code readability. Our contribution is important in a way that if will help developers to

choose one of the both languages for their soft ware’s according to their readability. As

it’s mentioned before that software readability is important for the economic value of SW

too.

In this paper we will discuss some programming features that effect readability of code

in Java and c#. Short snippets from java and c# code will be taken. Different metrics exist

to calculate the readability of code. These metrics include ARI automated readability

index, SMOG and the gunning fox index. By using these metrics we will find the

readability of snippets from both languages. And at the end a comparison of both

language’s readability will be made on the basis of these results.

Rest of the paper is organized as Section 2: literature review of the relevant literature,

Section 3describes problem statement of the research, Section 4 consists on methodology

of work including the constructs that affect programming readability and metrics to

measure readability of source code, Section:5 presents experimental results and rest

finally conclusion and future work is given.

2. Literature Review

In 2010 Buse and Weimer constructed a readability tool that automatically measures

readability [6]. Authors considered a number of human annotators for the judgment of

selected code’s readability. Selected code was snippets of java code. Results obtained

from experts were compared with their proposed measure. Results shown that the

measure’s accuracy was 80%.Association between Two quality features and readability

were studies, features were errors or faults and evolution. If selected is fine grained so the

effect of code volume will be neglected. Author used java code snippets and read features

in code line by line. Author said that the volume of code directly effects the readability

feature of code.; as short code is easier to read as compared to large one. Readability

attribute of the code depends on code’s complexity and coding style as well.

Author in [7] developed an automatic system to increase code readability. He proposed

that if blank lines are added in source code then it would improve code readability and

also he located points from internal documentation. Author developed a tool for his

proposed technique, which automatically gets java methods as input and returns a version

segmented by blank lines after each meaningful block of code. This segmented version of

code helps in code readability and also it is helpful for the internal comments that where

to place. Evaluation results shown that the automated blank line’s insertion is as effective

as blank lines added by programers. It seemed by results that system uses vertical lines as

programmers think it is better to use.

In [8], the author Wang, Xiaoran and Lori Pollock cleared the role of source code

readability in the improvement of software quality. They said that code readability is

important for the later stages of Software development life cycle e.g., maintenance phase.

As most of the cost of software development is expended on maintenance phase. Author

gathered a number of open source snippets from internet and asked some programming

experts to value the complexity of code. This is done on the basis of some programming

constructs e.g., keywords, loops etc. they also developed a tool that automatically

measures code’s readability, which’s effectiveness is better than the human judgment.

Collar Jr, Emilio, and Ricardo Valerdi proposed that the source code readability effects

the software cost [9]. It means that the improved code readability will decrease the time

spent on code reading and it will decrease that software cost in each stage of the software

development. Similarly less readability will improve the time of reading that will leads to

the improved software cost. Results are presented with procedural languages, that shows

how programming code can be analyzed with respect to the readability. Readability of

code directly effects the time spend on understanding code during maintenance phase.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

Copyright ⓒ 2015 SERSC 81

Maintenance phase is the most important and cost consuming phase of software

development life cycle.

In [10] ARI is described, which is the metric for code readability measurement. In ARI

(automated readability index) two factors for readability are used. One is the sentence

difficulty which is established by calculating words per sentence [15]. And second is the

word difficulty which refer to the letters per word

SMOG, Simple Measure of Gobbledygook was proposed in 1969 by G Harry

McLaughlin [11]. SMOG is used for measuring code readability. This metric gives an

estimated level of education needed for reading and understanding a piece of code.

According to some others, SMOG stands for Robert Gunning’s FOG. SMOG outputs are

calculated by adding 3 in polysyllable count’s square root.

Robbert Gunning introduced [12] another readability metric FOG. In FOG formula

average length of sentences added to the hard word’s percentage. Average length of

sentences is calculated by dividing number of words by the total number of sentences.

3. Problem Statement

Programs must be written for people to read, and only incidentally for machines to

execute [2]. A portion of code written by a programmer (author) must be understandable

by current stakeholders, e.g., the author’s immediate team members (and even the author

at a future time). But that is not all; the code must be understandable by future

stakeholders, e.g., rest of the programmers in the project or organization, especially

programmers who might be hired in future. Code readability is important in terms of

modification, understandability, maintainability and reusability. So readability factor

increase quality of software. According to TIOBE programming community index java

and C# languages are maximum used commercially, cause of being type safe. Therefore

we must know the readability value of both languages so that we could be able to choose

best one of both. In this way a comparison of C# and java readability is needed to make us

able to make decisions.

4. Methodology

In this paper we will discuss some programming features that effect readability of code

in Java and c#. To find the effect of these features Short snippets from java and c# code

will be taken, and then the effect of these features on readability will be calculated using

some metrics. Different metrics exist to calculate the readability of code. These metrics

include ARI automated readability index, SMOG and the gunning fox index. By using

these metrics we will find the readability of snippets from both languages. And at the end

a comparison of both languages’ readability will be made on the basis of these results.

This will be helpful in making decision in selecting language for projects.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

82 Copyright ⓒ 2015 SERSC

Figure 1. Approach workflow

Table 1. Constructs that Effect Code Readability

1. Meaningful names Naming conventions

2. Comments Comments

3. Spacing Spacing

4. Indents Indentation

5. Short scopes Scopes

6. Line length distribution Code Distribution

7. Identifier name length Identifier Length

8. Arithmetic formulas Complexity of formulas

9. Identifier frequency Number of identifiers

10. If-else Decision structures

11. Nested-if

12. Switch

13. While Loop Repetition structures

14. For loop

15. Do-while

16. Nested loop Nested Repetition

17. Recursive Repetition

18. Arrays Array Structures

19. Classes Distribution Class Diagrams

20. Inheritance

4.1 Code Readability Metrics

The following sub sections focus on ARI, SMOG and Gunning Fog metrics.

4.1.1. The Automated Readability Index (ARI): In ARI (automated readability index)

two factors for readability are used. One is the sentence difficulty which is established by

calculating words per sentence. And second is the word difficulty which refers to the

letters per word. The equation for calculating ARI index is (see Eq. 1).

ARI = 4.71(characters) + 0.5 (words) – 21.43 (1)

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

Copyright ⓒ 2015 SERSC 83

4.1.2. SMOG: The Simple Measure of Gobbledygook (SMOG) was proposed in 1969 by

G Harry McLaughlin [11]. SMOG is used for measuring code readability. This metric

gives an estimated level of education needed for reading and understanding a piece of

code. According to some others, SMOG stands for Robert Gunning’s FOG. SMOG

outputs are calculated by adding 3 in polysyllable count’s square root.

SMOG = 3 + Square Root of Polysyllable Count (2)

4.1.3. The Gunning’s Fog Index: Robbert Gunning introduced [12] another readability

metric FOG. In FOG formula average length of sentences added to the hard word’s

percentage. Average length of sentences is calculated by dividing number of words by the

total number of sentences.

Grade Level = 0.4 (ASL + PHW) (3)

4.1.4. Flesch-KincaidReadability Index: Flesch-Kincaid test results indicates the

reading ease of the given metirial, if the value is high it means readability is high and if

the output is less that means code is difficult to read. Flesch Reading Ease Score (FRES)

test formula is given as [14].

206.835 − 1.015 (
𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
) − 84.6 (

𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑑𝑠
) (4)

Table 2. Output Score Can be Interpreted According to these Criteria

Score Notes

90.0 – 100.0 Easily understood by an average 11-year old student

60.0 – 70.0 Easily understood by 13- to 15-year old students

 0.0 - 30.0 Easily understood by University graduates

4.1.5. Coleman-Liau Index: Meri Coleman and T. L. Liau designed another readability

index similar as ARI but unlikely all others. This index focuses on the letters per word but

not on the syllables. Opinions about accuracy of both varies. Formula for the Coleman–

Liau index is following:

𝐶𝐿𝐼 = 0.0588𝐿 − 0.296𝑆 − 15.8 (5)

where L and S are average number of letters and sentences.

5. Experimental Results

The Experiments are made on the java and C# source code snippets. SMOG, Gunning

Fog, ARI etc metrics are used for getting readability index. Some constructs are not well

fitted for the metrics readability index so that we have also arranged a survey. In this

survey we have prepared a questionnaire and distributed to some programming experts

with the request to fill that. In this questionnaire we mentioned all snippets used in

experiments and their readability percentage is asked from those experts. Readability

index results are presented in tabular form as well as in graphical form. Cause graphs

gives more understandability and visibility.

5.1. Tabular Representation of Results: All metrics are applied on java snippets and C#

as well. In the following table metric grades are mentioned, applied on different

constructs of programming languages. Line length distribution and class distribution have

maximum average readability grade, that shows high readability of these constructs. But

comparing C# and java for these two constructs, C# have require more grade level as

http://en.wikipedia.org/w/index.php?title=Meri_Coleman&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=T._L._Liau&action=edit&redlink=1

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

84 Copyright ⓒ 2015 SERSC

compared to java. Inheritance and overriding are two constructs with the highest

readability. But comp[aring java and C# we found that C# have high readability grade

level as compared to java. So According to the results, it is proved that java is more

readable as compared to C#.

Table 3. Java Construct’s Readability

Construct
FKGL

Grade

Gunning

fog

Grade

CLI

Grade

SMOG

Grade

ARI

Grade

FK

Reading

ease

Average

If-else 2 2.7 2.2 1.8 -3.6 92.9 1.0

Switch statement 1 2.3 3.5 1.8 -3.1 98.5 1.1

Nested if 4.2 6.8 -0.6 1.8 -0.7 95 2.3

For loop 4.2 6.8 -0.2 1.2 -0.5 95 2.4

While loop 1.5 3.6 0.5 1.8 -3.8 100 0.7

Do-while 1.3 3.1 3.9 1.8 -1.8 99.7 1.7

Nested loop 5.2 8 -2.6 1.8 -0.8 93.5 2.3

Comments 11.2 8 10.9 10.1 5.5 34.2 9.1

Arrays 4.5 7.2 -1.4 1.8 -0.9 94.6 2.2

Recursive 5.7 6.6 8.6 5 1.6 66.8 5.5

Inheritance -0.1 2.3 -1.8 1.8 -7.3 106 -1.0

Overriding -0.3 1.9 -1.5 1.8 -7.7 105 -1.2

Scope 0.9 2,9 4.2 1.8 -1.7 101 1.6

Class

distribution

13.5 12.6 14.7 6 17 48.5 12.8

Arithmetic

formula

3.3 3.1 9.2 3.2 1.3 80.9 4.0

Indents 4.3 5.4 10 4.1 0.3 68.1 4.8

Spacing 9.9 12.9 13.5 9.2 8.1 45.9 10.6

Line length

distribution

15 16.4 20.1 11.6 15.3 16.1 15.7

Table 4. C# Constructs’ Readability

Construct

FKGL

Grade

Gunning

Fog

grade

CLI

grade

SMOG

grade

ARI

grade

FK

reading

ease

average

If else 3.9 5.7 5.5 4.4 -0.8 79.9 3.7

Switch statement 4.4 7.2 5.3 5.4 0.1 79.8 4.5

Nested if 2.8 6 -0.9 1.8 -2 101 1.5

For loop 2.8 6 -0.5 1.8 -1.7 101 1.7

While loop 3.3 6.5 1.1 4.4 -1.9 92.4 2.7

Do while loop 3.1 6 5.1 4.4 0.3 90.9 3.8

Nested loop 3.5 6.8 -2.3 1.8 -2.1 100 1.5

Comments 8.6 9.7 6.5 8.3 5.9 67.3 7.8

Array 3.2 6.4 -1.8 1.8 -2.2 100.7 1.5

Recursive 8.4 10 9.8 7.2 4.1 52.9 7.9

Inheritance 1.7 5.7 -1.7 4.4 -6.8 94.8 0.7

Overriding 2 5.5 -0.4 4.3 -5.9 91.9 1.1

Scope 5.6 8.4 5.9 6 2.7 79.5 5.7

Class distribution 13.5 12.6 14.7 6 17 48.5 12.8

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

Copyright ⓒ 2015 SERSC 85

Arithmetic

formula

7.5 8.6 11.6 6.6 5.1 57.3 7.9

Indents 6.9 9.2 12.4 5.1 2.3 49.5 7.2

Spacing 8.4 10.4 12.8 7.9 6.5 52.9 9.2

Line length

distribution

20 21.2 21.6 15.6 21.5 -1.8 19.9

5.2. Graphical Representation of Results: We have presented readability calculation

results in the graphical form to improve visibility. Graphs are designed using tabular

information. As concluded in the tables section that JAVA is more readable as compared

to C#, similarly it is clearly presented in the graphs that the C# code snippets require more

grade level for reading and understandability. Java snippet’s require less grade level and

have high Flesch-Kincaid Reading Ease index. So according to the results it is concluded

that the JAVA have more readability than C#.

Figure 1. Flesch-Kincaid Reading Ease

Figure 2. Flesch-Kincaid Grade Level

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

86 Copyright ⓒ 2015 SERSC

Figure 3. Gunning Fog Score Grade Level

Figure 4. Coleman-Liau Index Grade Level

Figure 5. SMOG Index Grade Level

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

Copyright ⓒ 2015 SERSC 87

Figure6. Automated Readability Index Grade Level

Figure 7. Average Grade Levels for C# and JAVA

Table 5. Results Taken from Programming Experts

Construct C# readability in % Java Readability in %

If else 60-80 100

Switch statement 60-80 80-100

Nested if 100 80-100

For loop 100 100

While loop 80-100 100

Do while loop 80-100 100

Nested loop 80-100 80-100

Comments 60-80 60-80

Array 80-100 80-100

Recursive 60-80 60-80

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

88 Copyright ⓒ 2015 SERSC

Inheritance 80-100 100

Overriding 80-100 100

Scope 60-80 60-80

Class distribution 40-60 40-60

Arithmetic formula 40-60 80-100

Indents 40-60 60-80

Spacing 40-60 40-60

Line length distribution 1-20 20-40

6. Conclusion and Future work

In this paper we have used some metrics to calculate readability of C# and java. We

selected 22 features that may affect source code readability. For the calculation of

readability index we have used five common readability metrics. And for the well trusted

results we have also designed a questionnaire using these C# and java snippets. This

questionnaire is distributed in 15 experts to get their opinion about readability percentage

of both languages. According to the results, metrics shown that java is more readable

programming language than C# and from the survey as well. For the further enhancement

of the work, more constructs of the programming languages can be used for the

experiments which may affect the programming language readability. There are many

other languages which are becoming popular, so we may make comparison in different

language’s readability for the good decision of programmers to choose best language for

development.

References

[1] G. Amrulla, et al.,“A Survey of Improving Computer Program Readability to Aid

Modification”, International Journal, vol. 3, no. 3, (2014).

[2] Y. Uni, “Impact of Programming Features on Code Readability”, (2013).

[3] T. Tenny, “Program readability: Procedures versus comments”, Software Engineering, IEEE

Transactions on, doi>10.1109/32.6171, vol. 14, no. 9, (1988), pp. 1271-1279.

[4] C. A. Cunha, J. L. Sobral and M. P. Monteiro, "Reusable aspect-oriented implementations of

concurrency patterns and mechanisms", Proceedings of the 5th international conference on Aspect-

oriented software development. ACM,(2006).

[5] J. L. Elshoff and M. Marcotty, "Improving computer program readability to aid modification”,

Communications of the ACM, vol. 25, no. 8,(1982), pp. 512-521.

[6] R. P. L. Buse and W. R. Weimer, "Learning a metric for code readability", Software Engineering, IEEE

Transactions on, vol. 36, no. 4, (2010), pp. 546-558.

[7] P. Sivaprakasam and V. Sangeetha, "An accurate model of software code readability", International

Journal of Engineering Research and Technology. ESRSA Publications,(2012)August, vol. 1, no. 6.

[8] X. Wang, L. Pollock and K. Vijay-Shanker, "Automatic segmentation of method code into meaningful

blocks to improve readability", Reverse Engineering (WCRE), 2011 18th Working Conference on

IEEE,(2011).

[9] E. Collar Jr. and R. Valerdi,“Role of software readability on software development cost”,(2006).

[10] “The Automated Readability Index (ARI)”, http://www.readabilityformulas.com/automatedreadability-

index.php.

[11] “The smog readability formula”, http://www.readabilityformulas.com/smog-readability-formula.php.

[12] “The Gunning’s Fog Index (or FOG) Readability Formula”,

http://www.readabilityformulas.com/gunning-fog-readabilityformula. Php.

[13] J. L. Elshoff and M. Marcotty, “Improving computer program readability to aid modification”,

Communications of the ACM, vol. 25, no. 8,(1982), pp. 512-521.

[14] http://www.mang.canterbury.ac.nz/writing_guide/writing/flesch.shtml.

[15] R. Namani1 and J. Kumar, “A New Metric for Code Readability”, IOSR Journal of Computer

Engineering, vol. 6, Issue 6,(2012) November-December.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

Copyright ⓒ 2015 SERSC 89

Authors

Aisha Batool, she is working on her MS thesis at the Department

of Computing and Technologies, Iqra University, Islamabad,

Pakistan. She is working on data analysis methods using artificial

intelligence theories. Her research covers multiple disciplines within

computer science and software engineering including mobile

computing, image processing, artificial intelligences, and big data.

She has two journal publications and overall she has more than 03

years' research experience in CS and IT.

Muhammad Habib ur Rehman, he is a third year PhD student at

Department of Computer Systems and Technology, University of

Malaya, Kuala Lumpur, Malaysia. He is working on big data mining

systems for Internet of Things. His research covers a wide spectrum

of application areas including smart cities, mobile social networks,

Quantified self, mHealth and wearable assistive technologies among

many others. The key research areas of his interest are: mobile

computing, edge-cloud computing, Internetof Things, data mining,

machine learning, and mobile distributed analytics.

Aihab Khan, he is assistant professor at Iqra University Islamabad

Pakistan. His expertise is in Information Systems (Business

Informatics), Computer Communications (Networks), Computer

Security and Reliability. He has overall 45 publications.

Amsa Azeem, she is working on her MS thesis at the Department

of Computing and Technologies, Iqra University, Islamabad,

Pakistan, she is working on representation and quantification of non-

functional requirement. Her research covers the software requirement

engineering. Overall she has 01 year research experience in software

engineering.

International Journal of Software Engineering and Its Applications

Vol. 9, No. 11 (2015)

90 Copyright ⓒ 2015 SERSC

