NLOS Identification Approach Based on Energy Block for 60GHz Systems

Xiaolin Liang¹, Hao Zhang¹,², Tingting Lv¹, Xuerong Cui³ and T. Aaron Gulliver²

¹College of Information Science and Engineering, Ocean University of China
Qingdao, 266100, China
²Department of Electrical and Computer Engineering, University of Victoria
Victoria, V8W 3P6, Canada
³Department of Computer and Communication Engineering, China University of Petroleum (East China)
xiaolin87liang@163.com, zhanghao@ouc.edu.cn
lvtingting33@163.com, agulliver@ece.uvic.ca
cuixuerong@163.com

Abstract

The major problem is the non-line-of-sight (NLOS) propagation in indoor localization. In order to perform NLOS identification, in this paper, we propose a novel NLOS identification technique based on the maximum energy block of the received signal using energy detector. In particular, the IEEE 802.15.3c 60 GHz channel models are used as examples and the above statistics is found to be explained in detail. The simplicity of the proposed approach lies in the use of the parameters of the energy-based time of arrival (TOA) estimation algorithm. The CM1 and CM2 channel models of the IEEE 802.15.3c channel models are used. Numerical simulations results show the correct identification with the proposed approach is better than with the multipath channel statistics based approach.

Keywords: NLOS identification, maximum energy block, 60 GHz, energy detector, IEEE 802.15.3c

1. Introduction

The location of a mobile terminal (MT) can be estimated using different parameters of a received signal, such as TOA, angle-of-arrival (AOA), and/or the received signal strength (RSS). Impulse radio 60 GHz has a great potential for accurate ranging and localization systems due to its very wide bandwidth and capability in resolving individual multipath components [1–6]. Therefore, the TOA of the received signal can be estimated with high accuracy for 60GHz systems if the first arriving path has been identified precisely. One of the major challenges for localization systems is the mitigation of non-line-of-sight (NLOS) effects. If the direct path between a fixed terminal (FT) (An FT is usually a base station in a cellular network or an anchor node in a sensor network.) and the MT is being obstructed, the TOA of the signal to the FT will be delayed, which introduces a positive bias. Using such NLOS TOA estimates during the localization of the MT position may significantly degrade the positioning accuracy. Hence, FTs that are under the NLOS condition have to be identified and their effects have to be mitigated.

The NLOS identification and mitigation techniques have been discussed extensively in the literature, but mainly within the cellular network framework [7–13]. For example, in [7], skewness of the ranging measurements is compared with the threshold for NLOS identification, where the measurement noise variance is assumed to be known. In [8], a decision-theoretic NLOS identification framework is presented, where various hypothesis
tests are discussed for known and unknown probability density functions (PDFs) of the TOA measurements. Guvenc et al. [9, 13] used mean excess delay, root mean square (RMS) delay, and kurtosis of multipath channel as NLOS identification metrics. When the statistics of kurtosis, mean excess, and RMS delays are priori known, likelihood ratio tests can be performed for hypothesis selection. Another method was proposed by Heidari et al. [10]. They tried to find the first detected path of the received signal as a peak of the filtered Channel Impulse Radio. As similar to the previous method, this technique also used joint likelihood function using the mean excess delay τ_{med}, total received power P_{tot} and the hybrid of the power of the first detected path and TOA of the first detected path τ_{med}. Venkatesh [11] identified the channel based on TOA, RSS, and RMS delay spread (RDS) of the received signal. The conditional distributions of the TOA, RSS, and RDS estimates are functions of the distance and the channel state. Provided that the physical distance between the transmitted and receive nodes is known exactly, the state of the channel can be identified by comparing the likelihood values for each of the estimates (TOA, RSS, and RDS), conditioned on the distance. Shimizu et al. [12] performed intensive measurements of path-loss and delay-profile characteristics of LOS and NLOS environments in a suburban residential area. Based on their analysis, they found that the delay spread was dependent on distance, and the NLOS delay spread was found to be several times larger than that of the LOS case. The skewness of delay spread for the NLOS cases ranged from 80 to 200 ns, which was an order of magnitude larger than that of the LOS case.

In this paper, we propose a new NLOS identification approach for the 60 GHz signal, which is based on the maximum energy block of the received signal using energy detector. Firstly, we use the energy detector TOA estimation algorithm for the estimation the TOA. Secondly, we characterize the maximum energy block of the received signal. Finally, we use a threshold test for NLOS identification.

The remainder of this paper is organized as follows. Section II describes the signal and channel model. Section III describes NLOS identification approach and Section IV presents the results of the numerical simulations. The concluding remarks are given in Section V.

2. System Model

Currently, there are two important standards that have been developed for 60GHz wireless communications systems, IEEE 802.15.3c and IEEE 802.11ad [14-15]. In this paper, the channel models in IEEE 802.15. 3c standard are used because it is specifically designed for wireless personal area networks and thus encompasses typical indoor environments. Further, these are the most widely employed models for 60 GHz systems. The IEEE 802.15.3c standard was the first developed for high data rate short-range wireless systems. The physical layer was designed to support the transmission of data within a few meters at a maximum data rate of 2Gbps. These models have been developed for communications in the frequency band 57 to 66GHz in indoor residential, indoor office and library environments (with differences largely due to the LOS and NLOS characteristics) [16-20]. In this paper, a pulse position modulation time hopping (PPM-TH) 60 GHz signal is employed for ranging purposes. The propagation delay τ, between the transmitter and receiver is estimated for use in localization.

2.1. 60 GHz Signal

The PPM-TH 60 GHz signals have a very short duration (typically 100 picoseconds or less), and can be expressed as:
\[s(t) = \sum_{j=0}^{\infty} p(t - jT_s - C_j T_e - a_j \epsilon) \]

(1)

where \(T_s \) is the symbol time. The time hopping code represented by \(C_j \) is a pseudorandom integer-valued sequence which is unique for each user to limit multiple access interference, and \(T_e \) is the chip time. The PPM time shift is \(\epsilon \) so that if \(a_j \) is 1, the signal is shifted in time by \(\epsilon \), while if \(a_j \) is 0, there is no shift. Many pulse shapes have been proposed for 60 GHz systems. In this paper a Gaussian pulse is employed which is multiplied by the carrier signal to give:

\[p(t) = \frac{\sqrt{2}}{\alpha} \exp\left(-2\pi \frac{t^2}{\alpha^2}\right) \cos(2\pi f_c t) \]

(2)

where \(\alpha \) is the shape factor and \(f_c \) is the carrier frequency which here is \(f_c = 60 \) GHz. A smaller shape factor results in a shorter duration pulse and a larger bandwidth.

![Figure 1. Waveform of the 60 GHz Signal](image)

2.2. Signal Shift and Path Loss

The path loss is defined as the ratio of the received signal power to the transmit signal power and it is very important for link budget analysis. Unlike narrow-band system, the path loss for a wide-band system such as mm-wave system, is both distance and frequency dependent. In order to simplify the models, it is assumed that the frequency dependence Path Loss is negligible and only distance dependence path loss is modeled. The signal path loss, which depends on the propagation distance and the channel, is described by:

\[PL(d)[dB] = PL_0 + 10 \cdot n \log_{10}\left(\frac{d}{d_0}\right) + X_\sigma [dB]; \quad d \geq d_0 \]

(3)

where \(d_0 \) and \(d \) denote the reference distance, and distance respectively. \(n \) is the path loss exponent for mm-wave and \(X_\sigma \) is the unit dB, with mean zero and variance \(\sigma^2 \), for a Gaussian random variable. Table 1 summarizes the values of \(n, PL_0, \sigma \), for different environments and scenarios.
Table 1. Values of n, PL_0, σ_ϵ for Different Environments and Scenarios

<table>
<thead>
<tr>
<th>environments</th>
<th>n</th>
<th>PL_0</th>
<th>σ_ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>indoor residential (LOS)</td>
<td>1.53</td>
<td>75.1</td>
<td>1.50</td>
</tr>
<tr>
<td>indoor residential (NLOS)</td>
<td>2.44</td>
<td>86.0</td>
<td>6.20</td>
</tr>
<tr>
<td>indoor office (LOS)</td>
<td>1.16</td>
<td>84.6</td>
<td>5.40</td>
</tr>
<tr>
<td>indoor office (NLOS)</td>
<td>3.74</td>
<td>56.1</td>
<td>8.60</td>
</tr>
</tbody>
</table>

The signal shift can be expressed as

$$t = dt \times floor\left(\left(\frac{d}{c}\right)/dt\right)$$

(4)

where d denotes the distance between the transmitter and receiver, dt is the sampling period and c is the speed of light which is 299792458m/s in the air.

2.3. Multipath Fading Channel

The received signal can be written as

$$r(t) = \sum_{n=1}^{N} a_n p(t - \tau_n) + n(t)$$

(5)

where N is the number of received multipath components, a_n and τ_n denotes the amplitude and delay of the nth path respectively, $p(t)$ is the received 60 GHz pulse and $n(t)$ is Additive White Gaussian Noise with zero mean and two sided power spectral density $N_0/2$. Equation (5) can be rewritten as:

$$r(t) = s(t) * h(t) + n(t)$$

(6)

where $s(t)$ is the transmitted signal, and $h(t)$ is the channel impulse response which can be expressed as:

$$h(t, \theta) = \sum_{k=1}^{K} \sum_{l=1}^{L_k} \mu_{k,l} \delta(t - T_k - \tau_{k,l}) \delta(\theta - \theta_k - \omega_{k,l})$$

(7)

where $\delta(.)$ is the Dirac delta function, K is the number of clusters, L_k is the number of rays in the kth cluster, and $\mu_{k,l}$, $\tau_{k,l}$ and $\theta_{k,l}$ denote the complex amplitude, delay and azimuth of the kth ray of the lth cluster, respectively. Similarly, T_k and θ_k represent the delay and mean Angle of Arrival (AOA) of the kth cluster.

2.4. Energy Detector

After the amplifier, the received signals are squared, and then input to an integrator with integration period T_b. Because of the inter-frame leakage due to multipath signals, the integration duration is $3T_b/2$, so the number of signal values for energy detector is $N = 3T_b/2T_b$. The integrator outputs can be expressed as:

$$z[n] = \sum_{i=1}^{N} \int_{(i-1)T_b}^{iT_b} r^2(t)dt$$

(8)

where $n \in \{1, 2,..., N\}$ denotes the sample index with respect to the starting point of the integration period and N is the number of pulses per symbol. Here, N is set to 1, so the integrator outputs are
\[z[n] = \sum_{j=1}^{N} \int_{(c_j+n)T_b}^{(c_j+n+1)T_b} r^2(t) \, dt \]

(9)

If \(z[n] \) is the integration of noise only, it has a centralized Chi-square distribution, while it has a non-centralized Chi-square distribution if a signal is present. The mean and variance of the noise and signal values are given by [17] respectively.

\[\mu_0 = F\sigma^2, \quad \sigma_0 = 2F\sigma^4 \]

(10)

\[\mu_s = F\sigma^2 + E_n, \quad \sigma_s^2 = 2F\sigma^4 + 4\sigma^2 E_n \]

(11)

where \(E_n \) is the signal energy within the \(n \)th integration period and \(F \) is the number of degrees of freedom given by \(F = 2BTb + 1 \). Here \(B \) is the signal bandwidth.

3. LOS/NLOS Identification

3.1. Description of the Parameters

In this paper, we distinguish the NLOS scenarios by exploiting the statistics of the received signal by Energy Detector. The Maximum energy block is used in order to identify the LOS and NLOS scenarios respectively. The Maximum energy block can then be expressed as

\[M = \max \{ z[n], z[n+1], \ldots, z[n+M-1] \} \]

(12)

3.2. Identification Approach

The maximum energy block can be obtained for both LOS and NLOS scenarios using sample channel realizations from both scenarios. Here, we used sample channel realizations of the IEEE 802.15.3c standard channel models in order to obtain the values of the slope of the energy slope for both LOS and NLOS. In order to examine the characteristics of the maximum energy block, the CM1.1 and CM2.1 channel models from IEEE 802.15.3c standard are employed. For each SNR value, 1000 channel realizations are generated and sampled at \(f_s = 1 \cdot 10^9 \text{Hz} \). The other system parameters are \(T_s = 200 \text{ns}, T_e = 1 \text{ns} \), the value of \(Tb \) is from 1ns to 4ns and \(N = 1 \). Each realization has a TOA uniformly distributed within \((0-T_e) \). Here the SNR ranges from 5dB to 30dB, 1000 channel realizations are generated for each SNR. The residential LOS and residential NLOS channel models from IEEE 802.15.3c standard are employed. Here are \(26^*1000 \) samples which are got for each channel model. The relationship between maximum slope and SNR are shown in Figures 2-5.
Figure 2. Maximum Energy with Respect to SNR (CM1.1 and CM2.1 with Tb=1ns)

Figure 3. Maximum Energy with Respect to SNR (CM1.1 and CM2.1 with Tb=2ns)
From Figures 2-5, results show that the value of maximum energy is monotonous with respect to SNR (both LOS and NLOS environment) in the 60GHz wireless communication system respectively. But we find maximum of Maximum Energy (LOS) is even less than minimum of Maximum Energy (NLOS) when TX is 360, minimum of Maximum Energy (LOS) is even larger than maximum of Maximum Energy (NLOS) when TX is others. So we propose a novel method to identify the LOS and NLOS which can be expressed as:

\[\Theta = \alpha \begin{cases} < \alpha_{MS} & \Rightarrow LOS \\ > \alpha_{MS} & \Rightarrow NLOS \\ < \alpha_{MS} & \Rightarrow NLOS \\ > \alpha_{MS} & \Rightarrow LOS \end{cases} \]

where \(\alpha_{MS} \) is the threshold which is chosen to identify LOS and NLOS.
4. Simulated Results

In order to verify the effectiveness and practicality of the algorithm, so we make a lot of simulations using IEEE 802.15.3c channel models. The CM1.2, CM1.3, CM1.4 (residential LOS) and CM2.2, CM2.3, CM2.4 (residential NLOS) channel models from the IEEE802.15.3c standard are employed. For each SNR value, 1000 channel realizations are generated and sampled at $f_c = 1 \cdot e^{i\omega}$ Hz. The other system parameters are $T_s = 200\text{ns}$, $T_c = 1\text{ns}$, the value of T_b is from 1ns to 4ns and $N = 1$. Each realization has a TOA uniformly distributed within $(0-T_s)$. Here the SNR ranges from 5dB to 30dB, 1000 channel realizations are generated for each SNR. The CM1.2, CM1.3, CM1.4 (residential LOS) and CM2.2, CM2.3, CM2.4 (residential NLOS) channel models from the IEEE802.15.3c standard are employed. Here are 26*1000 samples which are got for each channel model. The relationship between joint parameter and SNR are shown in Figures 6-17.

![Figure 6. Maximum Energy with Respect to SNR (CM1.2 and CM2.2 with Tb=1ns)](image1)

![Figure 7. Maximum Energy with Respect to SNR (CM1.2 and CM2.2 with Tb=2ns)](image2)
Figure 8. Maximum Energy with Respect to SNR (CM1.2 and CM2.2 with \(T_b=3\text{ns}\))

Figure 9. Maximum Energy with Respect to SNR (CM1.2 and CM2.2 with \(T_b=4\text{ns}\))
Figure 10. Maximum Energy with Respect to SNR (CM1.3 and CM2.3 with $T_b=1\text{ns}$)

Figure 11. Maximum Energy with Respect to SNR (CM1.3 and CM2.3 with $T_b=2\text{ns}$)
Figure 12. Maximum Energy with Respect to SNR (CM1.3 and CM2.3 with $T_b=3\text{ns}$)

Figure 13. Maximum Energy with Respect to SNR (CM1.3 and CM2.3 with $T_b=4\text{ns}$)
Figure 14. Maximum Energy with Respect to SNR (CM1.4 and CM2.4 with $T_b=1\text{ns}$)

Figure 15. Maximum Energy with Respect to SNR (CM1.4 and CM2.4 with $T_b=2\text{ns}$)
From Figures 6-17, results show that joint parameter can identify the LOS and NLOS environments so long as the threshold α_{MS} can be fixed better.

5. Conclusion

In this paper, we presented a novel approach to deal with non-line-of-sight propagation that relies solely on features extracted from the received waveform. This technique does not require formulation of explicit statistical models for the features which is based on the maximum energy block of the received signal using energy detector. In order to verify the effectiveness and practicality of the algorithm, so we make a lot of simulations using IEEE 802.15.3c channel models. The CM1.1, CM1.2, CM1.3, CM1.4 (residential LOS) and CM2.1, CM2.2, CM2.3, CM2.4 (residential NLOS) channel models from the IEEE802.15.3c standard are employed. Results show that the joint parameter can identify the LOS and NLOS environments so long as the threshold α_{MS} can be fixed better. We developed techniques that are capable of distinguishing LOS/NLOS propagation in NLOS
conditions. Our results revealed that the proposed technique outperforms previous parametric techniques from the literature. But here is a question that the method we proposed can’t identify the LOS and NLOS environments in the office. So in the future, this will be the problem which is eager to be solved for us.

Acknowledgments

The authors would like to thank colleagues from the UWB Laboratory in the College of Information Science and Engineering, Ocean University of China, for help with obtaining the measurement data. This work was supported by the Nature Science Foundation of China under Grant No. 60902005, the Qingdao International Science and Technology Cooperation Projects of Qingdao under Grant No. 12-1-137-hz, and the Qingdao Transformation of Scientific and Technological Achievements Guiding Plan (youth special program) under Grant No. 14-2-4-37-jch.

References

[16] C. R. Anderson and T. S. Rappaport, “In-building wideband partition loss measurements at 2.5 and

Authors

Xiaolin Liang, now studies in the College of Information Science and Engineering and is a PhD candidate in the Ocean University of China. His research interests include ultra-wideband radio systems, 60 GHz wireless communication system.

Tingting Lv, received the PhD degree in the College of the Information Science and Engineering from the Ocean University of China in 2013. She is now a lecture in the College of Information Science and Engineering. Her research interests include ultra-wideband radio systems, 60GHz wireless communication system.

Hao Zhang, received the MBA degree in the New York Institute of Technology, American in 2001 and the PhD in Electrical and Computer Engineering from the University of Victoria, Canada in 2004. He was a project manager for Microsoft Inc. in United States during January 2000-May 2000. During 2004-2008, he was the Vice President for the United States Gamma Capital Inc. He is now an adjunct assistant professor in the department of Electrical and Computer Engineering. Also he becomes a professor and the PhD supervisor in the College of Information Science and Engineering from Ocean University of China in 2006. His research concerns ultra-wideband radio systems, 60GHz wireless communication system and MIMO wireless communication.

T. Aaron Gulliver, received the PhD in the Electrical and Computer Engineering from the University of Victoria, Canada in 1989. He is now a professor and the Ph. D. supervisor in the Department of Electrical and Computer Engineering. In 2002, he becomes a Fellow of the Engineering Institute of Canada, and in 2012 a Fellow of the Canadian Academy of Engineering. He is also a senior member of IEEE. His research concerns information theory and communication theory, algebraic coding theory and smart grid and ultra-wideband communication.