A Method for Dealing with Multi-granularity and Multi-scale Linguistic Information based on Modified Proportional 2-tuples

AiPing Zhang, Zhang Lin Peng and Xian Wen Gu
Hefei University of Technology, Hefei, Anhui, 230009, China
15555156609@163.com, pengzhanglin@163.com, 437168803@qq.com

Abstract

Multi-granularity linguistic information has been studied by researchers in many disciplines, in which the scale of linguistic term sets is usually restricted in domain [0, 1]. In this paper, we consider the multiple attribute group decision making (MAGDM) problems, in which the evaluation of each alternative with respect to each attribute is provided by several experts of the corresponding field. In order to convey the preferences of different experts exactly and to describe the characteristics of different attributes, linguistic term sets with different granularities and different scales have been proposed to express their evaluation values. Moreover, the performance values given by the experts take the form of modified proportional 2-tuples. In this process, the modified proportional 2-tuple, its comparative rules as well as several aggregation operators have been proposed. A new method has been proposed to achieve a basic modified linguistic term set (BMLTS) and a transformation function has been defined to make the performance values uniform. An example is given to illustrate the applicability and flexibility of the method.

Keywords: Multiple attribute group decision making; Computing with words; Linguistic variables; Linguistic modeling; Multi-granularity linguistic term sets; Multiple scale linguistic term sets

1. Introduction

Due to time constraint or computational costs, human decisions are usually evaluated by linguistic variables rather than numerical ones. A possible way to deal linguistic variables is through the use of linguistic modeling [1-5] and techniques of computing with words (CW). In 1986, Bonissone and Decker [3] presented a linguistic computational model based on extension principle. This model was operated on fuzzy numbers, which supported the semantics of linguistic terms. In 1993, Delgado and Verdegay [4] developed another model based on a symbolic method. Through this model, computations could be done on the indexes of linguistic terms. However, the primary limitations of both the above-mentioned approaches were that their results usually did not exactly match with any of the initial linguistic terms. Therefore an approximation process was developed to express the results within the initial expression domain. However, it produced a loss in information and hence the lacked in precision. In 2001, Herrera and Martínez [5] established 2-tuple linguistic representation model to overcome this limitation. The 2-tuple was composed of a linguistic term \(s_t \in S \) and a real number \(\alpha \in [-0.5,0.5) \). This model received a great deal of attention from researchers in many disciplines, such as: multiple decision making [6-14], supply performance [15], computer network security [16], classification problem[17], emergency response capacity [18] and failure mode and effect analysis [19]. However, as Herrera and Martínez pointed out, the 2-tuple linguistic representation model is only suitable for linguistic variables with equidistant labels. In order to break through this limitation, Wang and Hao [20] introduced a proportional 2-tuple fuzzy linguistic representation model which represented the linguistic information
by means of proportional 2-tuple $(s_i, \alpha)_{s_i \in S}$. Their model could be applied to linguistic variables which did not have to be uniformly and symmetrically distributed around a medium label and without the traditional requirement “equidistant labels” between them. However, the aggregation operators of this approach were based on canonical characteristic values (CCVs) of linguistic labels and they could only be used in symmetrical trapezoidal fuzzy numbers $[b-\delta, b, c, c+\delta]$. The author also suggested generalization of their proposal by considering proportional 2-tuples under more general contexts. In this regard, Yucheng Du et al studied the relationship between 2-tuple and proportional 2-tuple based on the concept of numerical scale and found that when different numerical scales were set different versions of 2-tuple fuzzy linguistic representation model could be obtained [21].

In this work, we study the relationship between 2-tuple and proportional 2-tuple from a different perspectives, and put forward modified proportional 2-tuple fuzzy linguistic representation model. In our model, the first proportional 2-tuple is represented by piecewise form. Then based on the concept of modified proportional symbolic translation (see Definition 13), proportional 2-tuple (s_i, α) is expressed as $(s_i, \alpha'). (s_i, \alpha')$ is called as the modified proportional 2-tuple. The modified proportional 2-tuple is a modification of proportional 2-tuple. The benefits of such modification are- when linguistic information is denoted by the modified proportional 2-tuple, its expression is consistent with that of 2-tuples. Therefore it has the character of 2-tuple, but its aggregations operator was not limited to only symmetrical trapezoidal fuzzy number $[b-\delta, b, c, c+\delta]$ contexts. Furthermore, the modified proportional 2-tuple is another form of representation of the proportional 2-tuple. In other words, it has the character of proportional 2-tuple and can be used in linguistic term sets, whose terms are not with equidistant labels. Therefore, the modified proportional 2-tuple does not have the limitation of the 2-tuple. Generally speaking, the modified proportional 2-tuple has advantages of both the 2-tuple and proportional 2-tuple, but does not suffer from their individual limitations. In fact, the modified version forms a link between them.

The problems of dealing with linguistic information belonging to various term sets with different granularity received extensive attention of researchers [22-29]. Typically, the scale used in methodology is usually restricted to $[0,1]$. In MAGDM problems, each attribute was valued by experts in the corresponding field. Depending upon the degree of uncertainty or preference of an expert to qualify an attribute, the linguistic term set chosen have different number of terms and scales different length (long or short). To the best of our knowledge, no methodology have been reported to-date that could simultaneously involve term sets with different granularity and different scales. The aim of this work is to develop a method that can manage multiple attribute group decision making problems, in which the performance values are in the form of modified proportional 2-tuple, and the linguistic term sets to which they belong have different granularity and different scale at the same time. Through this process, we obtain BMLTS and define a transaction function to make the performance values uniform.

The rest of the paper is arranged as follows. Section 2 reviews 2-tuple and proportional 2-tuple fuzzy linguistic representation model. Section 3 introduces notions of modified proportional 2-tuple. Section 4 presents a method managing multi-granularity and multi-scale linguistic information based on modified proportional 2-tuples. A real example is given in section 5. Important conclusions are made in section 6.
2. Preliminaries

2.1. Notions of 2-tuple Linguistic Representation Model

In this section, we review notions of 2-tuple. Consider $S = \{s_0, s_1, \ldots, s_g\}$ as a finite and totally ordered discrete term set with odd cardinality, where s_i represents a possible value for a linguistic variable.

Definition 1 ([5]). Let $S = \{s_0, s_1, \ldots, s_g\}$ be a linguistic term set, and $\beta \in [0, g]$ be the result of an aggregation of the indices of a set of labels assessed in linguistic term set S. Then the function Δ, used to obtain the 2-tuple linguistic information equivalent to β, is defined as

$$\Delta: [0, g] \rightarrow S \times [-0.5, 0.5),$$

$$\Delta(\beta) = (s_i, \alpha), \quad \text{with} \quad \begin{cases} s_i = \text{round}(\beta) \\ \alpha = \beta - i, \alpha \in [-0.5, 0.5) \end{cases},$$

(1)

where $\text{round}(\cdot)$ is the usual round operation, and s_i has the closest subscript to β, and α is called symbolic translation.

Definition 2 ([5]). Let $S = \{s_0, s_1, \ldots, s_g\}$ be a linguistic term set, and (s_i, α) be a linguistic 2-tuple. There is always a function Δ^1

$$\Delta^1: [0, g] \rightarrow S \times [-0.5, 0.5),$$

$$\Delta^1(s_i, \alpha) = i + \alpha = \beta$$

(2)

Definition 3 ([5]). Let (s_k, α_k) and (s_l, α_l) be 2-tuples, whose comparative rules are defined by ordinary lexicographic order:

1. If $k < l$, then $(s_k, \alpha_k) < (s_l, \alpha_l)$.
2. If $k > l$, then $(s_k, \alpha_k) > (s_l, \alpha_l)$.
3. If $k = l$, then
 a. If $\alpha_k = \alpha_l$, then $(s_k, \alpha_k) = (s_l, \alpha_l)$.
 b. If $\alpha_k < \alpha_l$, then $(s_k, \alpha_k) < (s_l, \alpha_l)$.
 c. If $\alpha_k > \alpha_l$, then $(s_k, \alpha_k) > (s_l, \alpha_l)$.

Negation operator of 2-tuple (s_i, α) is defined as:

$$\text{Neg}((s_i, \alpha)) = \Delta(g - \Delta^1(s_i, \alpha))$$

(4)

Definition 4 ([5]). Let $x = \{(\gamma_1, \alpha_1), (\gamma_2, \alpha_2), \ldots, (\gamma_n, \alpha_n)\}$ be a set of 2-tuples, then the 2-tuple arithmetic mean $\bar{\pi}$ is computed as
\[x^e = \Delta \left(\sum_{i=1}^{n} \frac{1}{n} \Delta^{-1}(y_j, \alpha_i) \right) \]

(5)

Definition 5 ([20]). Let \(x = [(y_1, \alpha_1), (y_2, \alpha_2), \ldots, (y_n, \alpha_n)] \) be a set of 2-tuples and \(W = [w_1, w_2, \ldots, w_n] \) be their associated weights. The 2-tuple weighted average \(\bar{x} \) is computed as

\[
\bar{x} = \Delta \left(\frac{\sum_{i=1}^{n} \Delta^{-1}(y_j, \alpha_i) w_i}{\sum_{i=1}^{n} w_i} \right) = \Delta \left(\frac{\sum_{i=1}^{n} \beta_j w_i}{\sum_{i=1}^{n} w_i} \right)
\]

(6)

Definition 6 ([5]). Let \(x = [(y_1, \alpha_1), (y_2, \alpha_2), \ldots, (y_n, \alpha_n)] \) be a set of 2-tuples and \(W = [w_1, w_2, \ldots, w_n] \) be their associated weights that satisfies: 1) \(w_i \in [0,1] \), 2) \(\sum_{i=1}^{n} w_i = 1 \).

The 2-tuple OWA operator \(F^e \) is

\[
F^e((y_1, \alpha_1), (y_2, \alpha_2), \ldots, (y_n, \alpha_n)) = \Delta \left(\sum_{j=1}^{n} w_j \beta_{j}^{*} \right)
\]

(7)

where \(\beta_{j}^{*} \) is the \(j^{th} \) largest of the \(\beta_{i} \) values.

2-tuple linguistic information is treated as a continuous range instead of discrete one. This approach has no loss of information, and can be used in linguistic terms with equidistant labels.

2.2. Proportional 2-tuple Linguistic Representation Model

Wang and Hao proposed proportional 2-tuple fuzzy linguistic representation model based on the concept proportional 2-tuple \((\alpha s_{i}, (1-\alpha) s_{i+1})\). The model can deal with linguistic terms which did not have equidistant labels.

Definition 7 ([20]). Let \(S = \{s_0, s_1, \ldots, s_e\} \) be an ordinal linguistic term set, \(I = [0,1] \), and

\[
IS = I \times S = \{(\alpha, s_{i}) : \alpha \in [0,1], i = 0, 1, \ldots, e\}
\]

(8)

Given a pair \((s_{i}, s_{i+1})\) of two successive ordinal terms in \(S \), any two elements \((\alpha, s_{i})\), \((\beta, s_{i+1})\) of \(IS \) is called a symbolic proportion pair, and \(\alpha, \beta \) are called a pair of symbolic proportions of pair \((s_{i}, s_{i+1})\), if \(\alpha + \beta = 1 \). A symbolic proportion pair \((\alpha, s_{i}) (1-\alpha, s_{i+1})\) will be denoted by \((\alpha s_{i}, (1-\alpha) s_{i+1})\) and the set of all the symbolic proportion pairs is denoted by \(\mathcal{S} \), i.e., \(\mathcal{S} = \{(\alpha s_{i}, (1-\alpha) s_{i+1}) : \alpha \in [0,1], i = 0, 1, \ldots, e-1\} \), where \(\mathcal{S} \) is called ordinal proportional 2-tuple set generated by \(S \).

Definition 8 ([20]). Let \(S = \{s_0, s_1, \ldots, s_e\} \) be a linguistic term set, and \(\mathcal{S} \) is the ordinal proportional 2-tuple set. The function \(\pi : \mathcal{S} \rightarrow [0, e] \) is defined by
\[\pi((\alpha s_i(1-\alpha)s_{i+1})) = i + (1-\alpha) \]
(9)

where \(i = 1,2,\ldots, g - 1 \), \(\alpha \in [0,1] \) and \(\pi \) is called the position index function of ordinal proportional 2-tuples.

Definition 9 ([20]). Let \(S = \{s_0,s_1,\ldots,s_g\} \) be a linguistic term set, and \(\overline{S} \) be the ordinal proportional 2-tuple set and \(x \in [0,g] \) represented the result of the aggregation. The function \(\pi^{-1} : [0, g] \rightarrow \overline{S} \) is defined as

\[\pi^{-1}(x) = ((1-\beta)s_i, \beta s_{i+1}), x \in [0, g] \]
(10)

where \(i = E(x) \), \(E \) is the integer part function, \(\beta = x - i \).

Definition 10 ([20]). Let \(S = \{s_0,s_1,\ldots,s_g\} \) be a linguistic term set, \(\overline{S} \) is the ordinal proportional 2-tuple set. For any \((\alpha s_i, (1-\alpha)s_{i+1}), (\beta s_j, (1-\beta)s_{j+1}) \in \overline{S} \), the comparative rules are defined as-

1) If \(i < j \), then
 a) \((\alpha s_i, (1-\alpha)s_{i+1}) \) and \((\beta s_j, (1-\beta)s_{j+1}) \) represents the same information when
 \(i = j - 1 \) and \(\alpha = 0, \beta = 1 \).
 b) otherwise \((\alpha s_i, (1-\alpha)s_{i+1}) < (\beta s_j, (1-\beta)s_{j+1}) \).

2) If \(i = j \), then
 a) If \(\alpha = \beta \), then \((\alpha s_i, (1-\alpha)s_{i+1}) \) and \((\beta s_j, (1-\beta)s_{j+1}) \) represent the same information.
 b) If \(\alpha < \beta \), then \((\alpha s_i, (1-\alpha)s_{i+1}) > (\beta s_j, (1-\beta)s_{j+1}) \).
 c) If \(\alpha > \beta \), then \((\alpha s_i, (1-\alpha)s_{i+1}) < (\beta s_j, (1-\beta)s_{j+1}) \).

Wang and Hao also presented several aggregation operators based on \(CCV \). Let \(s_i \) be symmetrical trapezoidal fuzzy number, where \(s_i = (a_i, b_i, c_i, d_i) \). Then the canonical characteristic value is defined as \(CCV(s_i) = \frac{(b_i + c_i)}{2} \). The authors proposed \(CCV \) of proportional 2-tuple as follows.

Definition 11 ([20]). \(S \), \(\overline{S} \) and \(CCV \) on \(S \) are defined as previously. The \(\overline{CCV} \) for a proportional 2-tuple \((\alpha s_i, (1-\alpha)s_{i+1}) \) is defined as

\[\overline{CCV}((\alpha s_i, (1-\alpha)s_{i+1})) = \alpha CCV(s_i) + (1-\alpha)CCV(s_{i+1}) \]
(12)

Let \(CCV(s_i) = l_i, i = 0,1,2,\ldots, g \), and \(l_0 < l_1 < \cdots < l_g \). \(CCV \) is a bijection function, and the inverse of \(CCV \) is defined as-

\[(C C \Psi)^{-1}(x) = (C C \Psi^{-1}(c_i, \beta(c_{i+1} - c_i))) = (CCV)^{-1}((1-\beta)c_i + \beta c_{i+1}) = (1-\beta)c_i + \beta c_{i+1} \]
(13)
Definition 12 ([20]). \(S, \overline{S}, CCV \) and \(CCV \) have the same previous definitions. Let \(y = \{y_1, y_2, \ldots, y_n\} \) be a set of proportional 2-tuples in \(\overline{S} \) and \(w = \{w_1, w_2, \ldots, w_n\} \) be their associated weights with \(0 \leq w_i \leq 1 \), for \(i = 1, 2, \ldots, n \), and \(\sum_{i=1}^{n} w_i = 1 \), the proportional 2-tuple weighted average (based on \(CCV \)) \(\overline{y}^w \) can be defined as-

\[
\overline{y}^w = (CCV)^{-1} \left(\sum_{i=1}^{n} w_i CCV(y_i) \right)
\]

(14) Definition 12 ([20]). \(S, \overline{S}, CCV \) and \(CCV \) are defined as previously. Let \(y = \{y_1, y_2, \ldots, y_n\} \) be a set of proportional 2-tuples in \(\overline{S} \), and \(w = \{w_1, w_2, \ldots, w_n\} \) be their associated weights with \(0 \leq w_i \leq 1 \), for \(i = 1, 2, \ldots, n \), and \(\sum_{i=1}^{n} w_i = 1 \), the proportional 2-tuple ordered weighted average (based on \(CCV \)) \(\overline{y}^{ow} \) is defined as-

\[
\overline{y}^{ow} = (CCV)^{-1} \left(\sum_{i=1}^{n} w_i CCV(y(i)) \right)
\]

(15)

where \(y(i), y(2), \ldots, y(n) \) is a permutation of \(y_1, y_2, \ldots, y_n \), so that \(y(i) \geq y(2) \geq \cdots \geq y(n) \).

From the 2-tuple linguistic representation model and the proportional 2-tuple linguistic representation model, we found the comparative rules and their aggregation operators of them were quite different. However, as Wang and Hao have pointed out in [20] that since the proportional 2-tuple is just an extension of 2-tuple, the difference between them should not be too much. Interestingly, we found that just by modifying the proportional 2-tuple linguistic representation model, the above-mentioned difference can be minimized.

3. Modified Proportional 2-tuple Fuzzy Linguistic Representation Model

In this section, the modified proportional 2-tuple is described to establish a bridge between 2-tuple and proportional 2-tuple.

3.1. Notions for Modified Proportional 2-tuple

Let \(\tilde{S} = \{s_1, s_2, \ldots, s_n\} \) be an ordinal fuzzy linguistic term set, in that the subscript \(i \) represent the ordinal number of the linguistic term in \(\tilde{S} \) and \(\tilde{i} \) represent the specific value of the subscript. In \(\tilde{S} \) the distance of label indexes of two successive terms are not equidistant.

Definition 13. Let \(\text{\tilde{S}} = \{s_1, s_2, \ldots, s_n\} \) be a finite and totally ordered discrete fuzzy linguistic term set with odd cardinality \(n \), and \(\beta' \in \left[\tilde{i}, \tilde{i} + 1 \right] \subseteq [\tilde{i}, \tilde{n}] \) be the result of an aggregation of the indexes of a set of labels assessed in linguistic term set \(\tilde{S} \). If \(\beta' - \tilde{i} = \alpha(i+1 - \tilde{i}) \), hence \(\alpha \in [0,1] \) indicates the ratio of \(\beta' - \tilde{i} \) to \(i+1 - \tilde{i} \). The same information of \(\beta' \) can be represented by the following function \(\tilde{\Delta} \).

\[
\tilde{\Delta}: [\tilde{i}, \tilde{n}] \rightarrow \tilde{S} \times [0.5, 0.5),
\]
\[
\tilde{\Delta}(\beta') = \begin{cases}
(s_{r},\alpha), \alpha \in [0,0.5) \\
(s_{r},\alpha-1), \alpha \in [0.5,1) \\
(s_{r},\alpha'), \alpha' \in [0.05) \\
(s_{r},\alpha'), \alpha' \in [-0.5,0)
\end{cases},
\]

(16)

where \(s_{r} \), or \(s_{r'} \) has the closest subscript to \(\beta' \). \(\alpha' = \begin{cases}
\alpha, \alpha \in [0,0.5) \\
\alpha-1, \alpha \in [0.5,1)
\end{cases} \) is called modified proportional symbolic translation and \((s_{r},\alpha') \) \(i = 1,2,\ldots,n \) is called the modified proportional 2-tuple. In the following, the set \(\tilde{S}' = \{ (s_{r},\alpha') \mid \alpha' \in [0.05,0.5) \} \) will be called the modified proportional 2-tuple set generated by \(\tilde{S} \). The function \(\tilde{\Delta} \) is a mapping from \([1,\pi] \) to \(\tilde{S}' \). This model is called as the modified proportional 2-tuple fuzzy linguistic representation model.

Remark 1. It is obvious that the linguistic term \(s_{j} \in \tilde{S} \) can be expressed by modified proportional 2-tuple as \((s_{r},0) \in \tilde{S}' \).

Example 1. Let \(\tilde{S} = \{ s_{1},s_{2},\ldots,s_{5} \} = \{ s_{12},s_{-0.5},s_{0},s_{0.5},s_{1.2} \} \), and \(\beta' = 0.3 \). We denote \(\beta' = 0.3 \) by modified proportional 2-tuple as following:

\[\beta' = 0.3 \in [0,0.5) \), therefore \(i = 0 \), \(i+1 = 0.5 \). The formula \(\beta' \cdot i = \alpha(\frac{i+1}{i+1} - i) \) can be written as \((0.3 \cdot 0) = \alpha(0.5 - 0) \), then and \(\alpha = 0.6 \in [0.5,1) \). \(\alpha' = \alpha \cdot 1 = 0.6 \cdot 1 = 0.4 \). Then

\[\tilde{\Delta}(0.3) = (s_{0.5},-0.4) \]

We can represent the same information of \(\beta' = 0.3 \) by modified proportional 2-tuple \((s_{0.5},-0.4) \).

The inverse function of \(\tilde{\Delta} \) is denoted by \(\tilde{\Delta}^{-1} \), which is defined as follows.

Definition 14. Let \(\tilde{S} = \{ s_{1},s_{2},\ldots,s_{n} \} \) be a linguistic term set, and \((s_{r},\alpha') \) be modified proportional 2-tuple. There is always a function \(\tilde{\Delta}^{-1} : \tilde{S} \times [-0.5,0) \rightarrow [1,\pi] \):

\[\tilde{\Delta}^{-1}(s_{r},\alpha') = \begin{cases}
\alpha', \alpha' \in [0,0.5) \\
\alpha', \alpha' \in [-0.5,0)
\end{cases} \]

(17)

Example 2. Let \(\tilde{S} = \{ s_{1},s_{2},\ldots,s_{5} \} = \{ s_{12},s_{-0.5},s_{0},s_{0.5},s_{1.2} \} \), and \((s_{0.5},-0.4) \) be modified proportional 2-tuple. We denote \((s_{0.5},-0.4) \) by a numerical value \(\beta' \in [-1,2,1,2] \) as follows:

From the expression of \((s_{r},\alpha') = (s_{0.5},-0.4) \), we get \(i = 0.5, \beta' = 0, \alpha' = 0.4 \in [-0.5,0) \).

By function \(\tilde{\Delta}^{-1} \)

\[\tilde{\Delta}^{-1}(s_{0.5},-0.4) = i + \alpha'(\frac{i+1}{i+1} - i) = 0.5 + (0.4)(0.5 - 0) = 0.3 \]

(\(s_{0.5},-0.4 \) can be transformed to numerical value \(\beta' = 0.3 \) by function \(\tilde{\Delta}^{-1} \).
3.2. The Comparative Rules and Aggregation Operators of Modified Proportional 2-tuples

Definition 15. Let \(\tilde{S} = \{s_1, s_2, \ldots, s_n\} \), \((s_j, \alpha'_j) \) and \((s_j, \alpha'_j) \) are the modified proportional 2-tuples. The comparative rules for them were as follows:

1) If \(i < j, \) then \((s_i, \alpha'_i) < (s_j, \alpha'_j) \).

2) If \(i > j, \) then \((s_i, \alpha'_i) > (s_j, \alpha'_j) \).

3) If \(i = j, \) then

 a) If \(\alpha'_i = \alpha'_j, \) then \((s_i, \alpha'_i) = (s_j, \alpha'_j) \).

 b) If \(\alpha'_i < \alpha'_j, \) then \((s_i, \alpha'_i) < (s_j, \alpha'_j) \).

 (18)

 c) If \(\alpha'_i > \alpha'_j, \) then \((s_i, \alpha'_i) > (s_j, \alpha'_j) \).

Definition 16. The negation operator over modified proportional 2-tuple is defined as

\[
N e ((s_i, \alpha'_i)) = \Delta (g - \tilde{\Delta}^{-1}(s_i, \alpha'_i))
\]
(19)

Definition 17. Let \(x = (\gamma_1, \alpha'_1), (\gamma_2, \alpha'_2), \ldots, (\gamma_n, \alpha'_n) \) be a set of the modified proportional 2-tuples, the arithmetic mean of the modified proportional 2-tuples is defined as

\[
\overline{x}^{ce} = \Delta \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\tilde{\Delta}^{-1}(\gamma_i, \alpha'_i)} \right)
\]
(20)

Definition 18. Let \(x = (\gamma_1, \alpha'_1), (\gamma_2, \alpha'_2), \ldots, (\gamma_n, \alpha'_n) \) be a set of the modified proportional 2-tuples. \(W = \{w_1, w_2, \ldots, w_n\} \) be their associated weights, and \(\beta'_i = \tilde{\Delta}^{-1}(\gamma_i, \alpha'_i) \). Then the weighted average, \(\overline{x}^{w} \) of the modified proportional 2-tuples is computed as

\[
\overline{x}^{w} = \Delta \left(\frac{1}{n} \sum_{i=1}^{n} \frac{\beta'_i \cdot w_i}{\sum_{i=1}^{n} w_i} \right) = \Delta \left(\frac{1}{n} \sum_{i=1}^{n} \frac{w_i}{\beta'_i} \right)
\]
(21)

Definition 19. Let \(x' = (\gamma_1, \alpha'_1), (\gamma_2, \alpha'_2), \ldots, (\gamma_n, \alpha'_n) \) be a set of modified proportional 2-tuples. \(W = \{w_1, w_2, \ldots, w_n\} \) be their associated weights that satisfies: 1) \(w_i \in [0, 1] \), 2) \(\sum_{i=1}^{n} w_i = 1 \). The modified proportional 2-tuples OWA operator \(F^{ce} \) is

\[
F^{ce}((\gamma_1, \alpha'_1), (\gamma_2, \alpha'_2), \ldots, (\gamma_n, \alpha'_n)) = \tilde{\Delta} \left(\sum_{j=1}^{n} w_j \cdot \beta''_j \right)
\]
(22)

where \(\beta''_j = \tilde{\Delta}^{-1}(\gamma_i, \alpha'_i) \) and \(\beta''_j \) is the \(jth \) largest of the \(\beta''_j \) values.

The above section shows that the operations on the modified proportional 2-tuple,
such as comparative rules, negation operator and aggregation operators are exactly the same with respect to the corresponding item of 2-tuple. So, the modified proportional 2-tuple does not have the limitation that the aggregation operators have to be only used in symmetrical trapezoidal fuzzy number \([b - \delta, b, c + \delta]\) contexts. Further more, all the existing aggregation operators of 2-tuple all can be applied to this modified proportional 2-tuple. Therefore, the application of the modified proportional 2-tuple fuzzy linguistic representation model can be extended to a much wider range.

4. Fusion Approach for Managing Multi-granularity and Multi-scale Linguistic Information based on Modified Proportional 2-tuple

\[
\tilde{S}_j = \left\{ \frac{s_i}{\delta}, \frac{s_i}{c}, \ldots, \frac{s_i}{n_j} \right\} \quad (j = 1, 2, \ldots, m)
\]

are linguistic term sets which have different granularity and scale. The performance value is \(u_j \in \tilde{S}_j^i \quad (i = 1, 2, \ldots, n; j = 1, 2, \ldots, m)\). In order to obtain the collective performance values of alternatives, we must transform \(u_j\) into linguistic information in a specific linguistic term set to make the information uniform. The specific linguistic term set denoted by \(\tilde{S}_T = \left\{ \frac{s_i}{\delta}, \frac{s_i}{c}, \ldots, \frac{s_i}{n_T} \right\}\) is called as basic modified fuzzy linguistic term set (BMLTS).

4.1. Setting up basic Modified Linguistic Term Set (BMLTS)

In this subsection, we will describe how to obtain BMLTS. \(\tilde{S}_j = \left\{ \frac{s_i}{\delta}, \frac{s_i}{c}, \ldots, \frac{s_i}{n_j} \right\} \quad (j = 1, 2, \ldots, m)\) are linguistic term sets whose granularity and scale are finite. Let \(\tilde{S}_T = \left\{ \frac{s_i}{\delta}, \frac{s_i}{c}, \ldots, \frac{s_i}{n_T} \right\}\) represent the BMLTS we are going to establish. There are three essential factors that need to be determined.

(1) Determination of the granularity of BMLTS. For the sake of maintaining uncertain degree of every experts, the maximum granularity of \(\tilde{S}_j \quad (j = 1, 2, \ldots, m)\) is chosen as the granularity of BMLTS, i.e. if \(\tilde{S}_k\) has the maximum granularity, then \(n_T = n_k = \max\{n_1, n_2, \ldots, n_m\}\).

(2) To find the range of BMLTS. The range of BMLTS should cover all of \(\tilde{S}_j \quad (j = 1, 2, \ldots, m)\). The minimum linguistic term in \(\tilde{S}_j \quad (j = 1, 2, \ldots, m)\) is selected as the smallest linguistic term \(s_{\min} \in \tilde{S}_T\), i.e. if \(\tilde{T}_T = \min\{1, 2, \ldots, m\}\), then the smallest linguistic term of \(\tilde{S}_T\) is \(\tilde{s}_{\min}\). The maximum linguistic term in \(\tilde{S}_j \quad (j = 1, 2, \ldots, m)\) is chosen as the largest linguistic term \(s_{\max} \in \tilde{S}_T\), i.e. If \(n_T = T = \max\{n_1, n_2, \ldots, n_m\}\), then the largest linguistic term of \(\tilde{S}_T\) is \(\tilde{s}_{\max}\).

(3) Determination of other linguistic terms in BMLTS. Let \(\tilde{S}_k = \left\{ \frac{s_i}{\delta}, \frac{s_i}{c}, \ldots, \frac{s_i}{n_k} \right\}\) has the maximum granularity, so \(n_T = n_k = \max\{n_1, n_2, \ldots, n_m\}\). Using function \(\tau_{\tilde{s}_k\tilde{s}_T}\) an one to one mapping was made from \(s_{\min} \in \tilde{S}_k \quad (i = 1, 2, 3, \ldots, n_k)\) to \(s_{\min} \in \tilde{S}_T \quad (i = 1, 2, 3, \ldots, n_T)\), to obtain the other linguistic terms of \(s_{\min} \in \tilde{S}_T \quad (i = 1, 2, 3, \ldots, n_T)\). The mapping \(\tau_{\tilde{s}_k\tilde{s}_T}\) is presented in the next subsection. From the above steps, the granularity, scale and linguistic terms of \(\tilde{S}_T\) are obtained to set up the BMLTS.
4.2. Getting Linguistic Terms of BMLTS

In this subsection, we will develop a transformation function from \(\tilde{S}_i^j \) to \(\tilde{S}_r^j \) to get the linguistic terms of BMLTS.

The function \(\bar{\lambda}: [I, n] \rightarrow \tilde{S}^j \) is a mapping which can transform numeric values \(\beta' \in [0, \bar{n}] \) to modified proportional 2-tuple depending on its definition domain \([I, n] \) and transformation rule. However there are \(m+1 \) different term sets \(\tilde{S}^j = \{s^j_{\tau}, s^j_{2\tau}, \ldots, s^j_{m+1} \} \) \((j = 1, 2, \ldots, m)\) in our group decision making problem. For this process, we need \(m+1 \) mapping functions according \(m+1 \) term sets \(\tilde{S}^j = \{s^j_{\tau}, s^j_{2\tau}, \ldots, s^j_{m+1} \} \) \((j = 1, 2, \ldots, m)\). In order to show the difference, we have represented the mapping function by \(\bar{\lambda}_j \).

Note 1: Function \(\bar{\lambda}_j \) \(((j = 1, 2, \ldots, m,T))\) as follows:

\[
\bar{\lambda}_j: [I, n, j] \rightarrow \tilde{S}_j^j,
\]

\[
\bar{\lambda}_j(\beta') = \begin{cases}
(s_{\tau}, \alpha) & \alpha \in [0, 0.5) \\
(s_{\tau}, \alpha - 1) & \alpha \in [0.5, 1] \\
(s_{-1\tau}, \alpha') & \alpha' \in [-0.5, 0)
\end{cases}
\]

(23)

The inverse function of \(\bar{\lambda}_j \) is denoted by \(\bar{\lambda}_j^{-1} \) \(((j = 1, 2, \ldots, m,T))\)

\[
\bar{\lambda}_j^{-1}: \tilde{S}_j^j \rightarrow [I, n, j] = \begin{cases}
\bar{i} + \alpha' \left((i+1)j - \bar{i} \right) & \text{if } \alpha' \in [0, 0.5) \\
\bar{i} + \alpha' \left(j - (i-1) \bar{j} \right) & \text{if } \alpha' \in [0.5, 0) \]
\]

(24)

Definition 20. Let \(\tilde{S}_k = \{s_{\tau k}, s_{2\tau k}, \ldots, s_{n_k} \} \) is the term set which has the maximum granularity, \(\tilde{S}_r = \{s_{\tau r}, s_{2\tau r}, \ldots, s_{n_r} \} \) is the BMLTS. \(\tilde{S}_k^j \) and \(\tilde{S}_r^j \) are ordinal modified proportional 2-tuple term sets generated by \(\tilde{S}_k \) and \(\tilde{S}_r \) respectively. A transformation function from \(\tilde{S}_k^j \) to \(\tilde{S}_r^j \) is defined as-

\[
\tau_{\tilde{S}_k^j \rightarrow \tilde{S}_r^j}: \tilde{S}_k^j \rightarrow \tilde{S}_r^j,
\]

\[
\tau_{\tilde{S}_k^j \rightarrow \tilde{S}_r^j}(s_{\tau k}, 0) = (s_{\tau r}, 0)
\]

(25)

From the value of transformation \((s_{\tau r}, 0) \), the \(i \)th linguistic term \(s_{\tau r}^i \) in \(\tilde{S}_r \) is computed. Next, the other terms of BMLTS, besides \(s_{\tau r}^i \) and \(s_{s\tau r}^i \) are also calculated. In this way, after all the terms in \(\tilde{S}_r = \{s_{\tau r}, s_{2\tau r}, \ldots, s_{n_r} \} \) are obtained, the BMLTS is finally set up.
Note 2: If a linguistic term set simultaneously has the maximum granularity and the greatest scale, it can be viewed as BMLTS \(\tilde{S}_r \).

4.3. Transforming Performance Values into Linguistic Information of BMLTS

In this section, we consider a multiple attribute group decision making problem as follows:

Let \(X = \{x_1, x_2, \ldots, x_n\} (n \geq 2) \) be a finite set of alternatives, \(U = \{u_1, u_2, \ldots, u_m\} \) \((m \geq 2)\) be a finite set of attributes, \(E = \{E_1, E_2, \ldots, E_m\} \) \((m \geq 2)\) be a group of experts and \(E_j \) be the \(j \)th expert corresponding to the field of the \(j \)th attribute \(U_j \). The performance value of the \(i \)th alternative with regard to the \(j \)th attribute given by the \(j \)th expert is denoted by \(u_{ij} \) \((i = 1, 2, \ldots, n; j = 1, 2, \ldots, m)\). Assume that each expert may use different linguistic term sets.

The performance values of alternative are defined by different linguistic term sets \(\tilde{S}_j (j = 1, 2, \ldots, m) \). In the interest of getting the collective performance values of alternatives, we denoted the performance values \(u_{ij} \) \((i = 1, 2, \ldots, n; j = 1, 2, \ldots, m)\) by modified proportional 2-tuple \(u_{ij} = (s_{ij}, \alpha'_j) \alpha' \in [-0.5, 0.5] \). Using the function \(\tau^r_{\tilde{S}_j; \tilde{S}_j} \), we can transform the performance value \((s_{ij}, \alpha'_j) \in \tilde{S}_j (j = 1, 2, \ldots, m) \) to the modified proportional 2-tuple \(p_{ij} = (\tilde{s}_{ij}, \alpha'_j) \in \tilde{S}'_j \).

\[
\tau^r_{\tilde{S}_j; \tilde{S}_j} \colon \tilde{S}_j \rightarrow \tilde{S}'_j ,
\]

\[
\tau^r_{\tilde{S}_j; \tilde{S}_j} (s_{ij}, \alpha'_j) = (\tilde{s}_{ij}, \alpha'_j) ,
\]

\[
= \Delta (\frac{\tilde{A}^{-1}(s_{ij}, \alpha'_j) - \tilde{A}^{-1}(s_{ij}, 0)}{\tilde{A}^{-1}(s_{ij}, 0) - \tilde{A}^{-1}(s_{ij}, 0)})(\tilde{A}^{-1}(s_{ij}, 0) - \tilde{A}^{-1}(s_{ij}, 0)) + \tilde{A}^{-1}(s_{ij}, 0) .
\]

Example 3: Let \(\tilde{S}_1 = \{s_{11}, s_{12}, \ldots, s_{19}\} = \{s_{-1.2}, s_{-0.5}, s_{0}, s_{0.5}, s_{1.2}\} \) and \(\tilde{S}_r = \{s_{1}, s_{2}, \ldots, s_{5}\} = \{s_{s.5}, s_{s.4}, s_{s.3}, s_{s.2}, s_{s.1}\} \) be two linguistic term sets. \((s_{0.5}, -0.4) \in \tilde{S}'_1 \) is a modified proportional 2-tuple. Transform \((s_{0.5}, -0.4) \) to a linguistic information in \(\tilde{S}'_j \) as follows:

\[
\tau^r_{\tilde{S}_j; \tilde{S}_j} (s_{0.5}, -0.4) = \Delta (\frac{\tilde{A}^{-1}(s_{0.5}, -0.4) - \tilde{A}^{-1}(s_{1.2}, 0)}{\tilde{A}^{-1}(s_{1.2}, 0) - \tilde{A}^{-1}(s_{1.2}, 0)})(\tilde{A}^{-1}(s_{0.5}, 0) - \tilde{A}^{-1}(s_{0.5}, 0)) + \tilde{A}^{-1}(s_{0.5}, 0) .
\]

\[
= \Delta (0.3 - (-1.2)) (0.5 - (-5)) = \Delta (0.3) (0.25) = \Delta (s_{0.125})
\]

Remark 2: Let \((s_{k}, \alpha'_j) \in \tilde{S}'_j, (k = 1, 2, \ldots, n_r) \), we can get it’s corresponding value in \((s_{ij}, \alpha'_j) \in \tilde{S}_j (j = 1, 2, \ldots, m) \) by the function \(\tau^r_{\tilde{S}_j; \tilde{S}_j} \):

\[
\tau^r_{\tilde{S}_j; \tilde{S}_j} (s_{ij}, \alpha'_j) = (s_{ij}, \alpha'_j) ,
\]

\[
= \Delta (\frac{\tilde{A}^{-1}(s_{ij}, \alpha'_j) - \tilde{A}^{-1}(s_{ij}, 0)}{\tilde{A}^{-1}(s_{ij}, 0) - \tilde{A}^{-1}(s_{ij}, 0)})(\tilde{A}^{-1}(s_{ij}, 0) - \tilde{A}^{-1}(s_{ij}, 0)) + \tilde{A}^{-1}(s_{ij}, 0) .
\]

Example 4: Let \(\tilde{S}_1 = \{s_{11}, s_{12}, \ldots, s_{19}\} = \{s_{-1.2}, s_{-0.5}, s_{0}, s_{0.5}, s_{1.2}\} \) and
The problem is to find the best or a suitable company with respect to various company’s capabilities. After pre-evaluation, four potential companies were selected as alternatives for further evaluation:

- x_1 is a car company
- x_2 is a computer company
- x_3 is a shipbuilding company
- x_4 is detector production company

After a detailed discussion with the experts about what criteria to consider for evaluating the company’s comprehensive abilities, four performance attributes were chosen:

- u_1 is the transformation ability
- u_2 is the financial strength
- u_3 is the management ability
- u_4 is the ability of marketing

And the weights according to four attributes given by experts were

$$w = (0.3 \ 5 \ 1.0 \ 1.5 \ 7.0 \ 1.8 \ 1.0 \ 3.0 \ 0 \ 9).$$

There four group of experts, each group is in charge of the evaluation of an attribute u_j ($j=1,2,3,4$). Each group of experts used different fuzzy linguistic term set \tilde{S}_j ($j=1,2,3,4$):

- $\tilde{S}_1 = \{s_{11}=\text{very}, s_{12}=\text{poor}, s_{13}=\text{medium}, s_{14}=\text{good}, s_{15}=\text{very}, s_{16}=s_{3}, s_{3}=s_{1}, s_{5}=s_{3}, s_{1}, s_{3})$\)
- $\tilde{S}_2 = \{s_{21}=\text{very}, s_{22}=\text{poor}, s_{23}=\text{medium}, s_{24}=\text{good}, s_{25}=\text{very}, s_{26}=s_{3}, s_{3}=s_{1}, s_{5}=s_{3}, s_{1}, s_{3})$\)
- $\tilde{S}_3 = \{s_{31}=\text{extremely}, s_{32}=\text{very}, s_{33}=\text{poor}, s_{34}=\text{poor}, s_{35}=\text{medium}, s_{36}=s_{3}, s_{3}=s_{1}, s_{5}=s_{3}, s_{1}, s_{3})$\)
- $\tilde{S}_4 = \{s_{41}=\text{extremely}, s_{42}=\text{very}, s_{43}=\text{poor}, s_{44}=\text{poor}, s_{45}=\text{medium}, s_{46}=s_{3}, s_{3}=s_{1}, s_{5}=s_{3}, s_{1}, s_{3})$\)

5. Illustrative Examples

An advanced technological achievement is waiting to be transformed into products. A comprehensive evaluation, four potential companies were selected as alternatives for further evaluation:

- \bar{S}_1 is very poor
- \bar{S}_2 is poor
- \bar{S}_3 is medium
- \bar{S}_4 is good
- \bar{S}_5 is extremely good

$$\tilde{S}_T = \{s_1, s_2, \ldots, s_7\} = \{s_{11}, s_{12}, s_{13}, s_{0}, s_1, s_3, s_{5}\}.$$ (s_{11}, 0.125) \in \tilde{S}_T \text{ is a modified proportional 2-tuple, its correspondence value in } \tilde{S}_T \text{ was computed as follows:}

$$\tau'_{\tilde{S}_2}: (s_{11}, 0.125) = \tilde{\Delta}_{\tilde{S}_1}(\tilde{\Delta}_{\tilde{S}_1}(s_{11}, 0.125)) \tilde{\Delta}_{\tilde{S}_1}(s_{11}, 0.125)) + \tilde{\Delta}_{\tilde{S}_1}(s_{11}, 0.125)) = \tilde{\Delta}_{\tilde{S}_1}(1.25) + \tilde{\Delta}_{\tilde{S}_1}(-1.2) = \tilde{\Delta}_{\tilde{S}_1}(0.3) = (s_{0.5}, -0.4)$$

$$= \tilde{\Delta}_{\tilde{S}_1}(1.5 + (-1.2)) = \tilde{\Delta}_{\tilde{S}_1}(0.3) = (s_{0.5}, -0.4)$$
\[s_{\text{good}} = \text{good}, s_{\text{very good}} = \text{very good}, s_{\text{extremely good}} = \text{extremely good} \]

The decision making process consisted the following steps -

Step 1: Establish decision matrix. Experts choose linguistic term sets \(\tilde{S}_j \) according to the characteristic of the attributes and their preferences. Then they give linguistic evaluation on alternatives with regard to the special attribute of their research fields. Construct decision matrix \(A \).

\[
A = \begin{pmatrix}
 u_{11} & u_{12} & u_{13} & u_{14} \\
 u_{21} & u_{22} & u_{23} & u_{24} \\
 u_{31} & u_{32} & u_{33} & u_{34} \\
 u_{41} & u_{42} & u_{43} & u_{44}
\end{pmatrix} = \begin{pmatrix}
 (s_{0},0) & (s_{0},0) & (s_{1},0) \\
 (s_{2},0) & (s_{1},0) & (s_{-1},0) & (s_{2},0) \\
 (s_{-2},0) & (s_{0},0) & (s_{3},0) & (s_{1},0) \\
 (s_{3},0) & (s_{2},0) & (s_{3},0) & (s_{0},0)
\end{pmatrix}
\]

Step 2: Setting up the BMLTS \(\tilde{S}_r \). Determine three essential factors of BMLTS: granularity, range and linguistic terms by the Process stated in subsection 4.1.

1. The granularity of \(\tilde{S}_r \). We choose the maximum granularity of the fourth linguistic term sets \(\tilde{S}_j (j = 1,2,3,4) \) as the granularity of \(\tilde{S}_r \),

\[T = m \text{ a } \{5,5,7,7\} = 7 \]

2. The range of \(\tilde{S}_r \). The minimum linguistic term of \(\tilde{S}_r \) is

\[\bar{T} = \min \{s_{17}, s_{17}, s_{18}, s_{19}\} = \min \{-3,-2,-5,-3\} = -5 \]

the maximum linguistic term of \(\tilde{S}_r \) is

\[\bar{T} = \max \{s_{17}, s_{17}, s_{18}, s_{19}\} = m \text{ a } \{3,2,5,3\} = 5 \]

3. The other linguistic terms of \(\tilde{S}_r \). \(\tilde{S}_s \) has simultaneously the maximum granularity and the greatest scale, so \(\tilde{S}_s \) was considered as BMLTS

\[
\tilde{S}_r = \{s_{5}, s_{3}, s_{-4}, s_{0}, s_{1}, s_{3}, s_{5}\}.
\]

Step 3: Make the performance values uniform.

\[
\tau_{\tilde{S}_r}^t (u_{11}) = \tau_{\tilde{S}_r}^t (s_{0},0) = \bar{T} \left(\frac{\bar{A}^t_1(s_{0},0) - \bar{A}^t_4(s_{-3},0)}{\bar{A}^t_1(s_{0},0) - \bar{A}^t_4(s_{3},0)} \right) = \bar{T} \left(\frac{\bar{A}^t_1(s_{0},0) - \bar{A}^t_4(s_{-3},0)}{\bar{A}^t_1(s_{0},0) - \bar{A}^t_4(s_{3},0)} \right) = \bar{T} \left(\frac{\bar{A}^t_1(s_{0},0) - \bar{A}^t_4(s_{-3},0)}{\bar{A}^t_1(s_{0},0) - \bar{A}^t_4(s_{3},0)} \right)
\]

The decision matrix in \(\tilde{S}_r \) is
Step 4: Computing the collective performance values of alternatives. The collective performance values \(p_i \) (\(i = 1, 2, \ldots, n \)) of alternatives \(x_i \) (\(i = 1, 2, \ldots, n \)) can be obtained by Eq. (6).

\[
p_i = \tilde{\Delta}_r \left(\sum_{j=1}^{4} w_j A_j^i(p_{ij}) \right) / \sum_{j=1}^{4} w_j
\]

\[
= \tilde{\Delta}_r \left(\frac{0.3512 \tilde{\Delta}_r^2(s_0,0) + 0.1578 \tilde{\Delta}_r^2(s_0,0) + 0.1811 \tilde{\Delta}_r^2(s_0,0) + 0.3099 \tilde{\Delta}_r^2(s_0,0,0,3333)}{0.3512 + 0.1578 + 0.1811 + 0.3099} \right)
\]

\[
= \tilde{\Delta}_r (0.8787) = (s_1, -0.1213)
\]

\[
p_2 = \tilde{\Delta}_r (1.6280) = (s_1, 0.3140) \quad p_3 = \tilde{\Delta}_r (0.2513) = (s_0, 0.2513)
\]

\[
p_4 = \tilde{\Delta}_r (3.0883) = (s_3, 0.0442)
\]

Step 5: Choosing the best alternatives. According to the collective performance values \(p_i \) (\(i = 1, 2, \ldots, n \)), choose the best alternative(s) with the maximum collective performance value.

\[p_4 > p_2 > p_1 > p_3 \]

The best choice is the detector production company.

6. Conclusions

To conclude, the proposed modified proportional 2-tuple, which had the form of 2-tuple has and the good qualities of proportional 2-tuple. The comparison rules and three aggregation operators of the modified proportional 2-tuple were also investigated to handle CW of sophisticated linguistic information.

Based on the modified proportional 2-tuple linguistic information, we provided a new method to address group decision making problem in which the experts use linguistic terms with different granularity and different scale at the same time. In the proposed method, BMTLS we set up by determining the granularity, scale and linguistic terms. A function was also reported which can transform the performance values to modified proportional 2-tuple in BMLTS to make the performance values uniform. Furthermore, the new method was fitted to a situation in which the attributes were evaluated by the respective experts of that field. According to the ranges and characteristics of attributes, experts choose freely the linguistic term sets according to their preferences.

Acknowledgements

This paper is supported by National Natural Science Foundation of China (NSFC) under Grant 71131002, National Natural Science Foundation for Young Scholars of China Grant 71303073.
References

Authors

Aiping Zhang. She was born in 1979. She is a women, she is from Shandong. And she is a lecturer of Hefei University of Technology, she is committed to the study of multiple attribute decision making.

Zhanglin Peng. He was born in 1984. He received his bachelor’s degree of management from Hefei University of Technology in 2008, and the master’s degree of management from Hefei University of Technology in 2011. Now He is a doctoral candidate in Hefei University of Technology. His research is focused on comprehensive evaluation theory and methodology, and decision making analysis.

Xianwen Gu. He was born in 1984. He is a doctoral candidate in Hefei University of Technology. His research is focused on regional economics.