QoS Preference Awareness Task Scheduling Based on PSO and AHP Methods

Juan Wang*, Fei Li and Luqiao Zhang

School of Network Engineering, Chengdu University of Information Technology, Chengdu, China
{wangjuan*,lifei,zhanglq}@cuit.edu.cn

Abstract

Most existing task scheduling algorithms fail to aware users' QoS preference and result in low user satisfaction rate for they do not reflect users' QoS requirements. We classify QoS factors into four main QoS class which users understand well and can describe their important level, and introduce AHP method to help user decide the class weight and avoid judgment logical error. Then, we improve existing standard PSO scheduling by use above AHP based different weights for different QoS classes to make PSO have QoS preference awareness ability. The simulations show our method gets obviously higher user satisfaction rate and maintains the efficiency at the same time. Finally, the simulations also point out that the hierarchical scheduling is necessary to avoid the common tasks take over the special resource.

Keywords: QoS Preference; Analytic Hierarchy Process; Task Scheduling; Cloud System; PSO

1. Introduction

With the development of the internet technology, the data obviously increase and make it is difficult for individual to store, manage and share these mass data. Cloud storage service is proposed to deal with these problems. Cloud storage system lets users easily store, access, and protect their data without worrying about maintenance, scaling up or down or hardware and firmware upgrades. With these advantages, cloud storage becomes a hot point in cloud computing area.

Task scheduling algorithms play a key role in cloud storage system. However, existing algorithms ignore the different QoS requirements of task and result in low user satisfaction rate. In order to address the problem, task scheduling have to satisfy multi-QoS requirements and have QoS preference awareness ability, rather than only improve the throughput of whole system.

In this paper, we study the QoS preference awareness task scheduling algorithm in cloud storage environment. We found that the reason why heuristic algorithms, such as particle swarm optimization (PSO), failed to aware QoS preference is that they use the fixed weighted fitness function. It is nature way to improve them is making their weights of fitness function adapt for tasks QoS requirements change. But the QoS factors are too professional to users to understand and give weights for them. And the weights decided by researchers or technicians do not reflect the users’ real demand. So the improve difficulty is how to make the weights of fitness function reflect the users’ requirements. We introduce the analytic hierarchy process (AHP) method to help user decide the weights for its consistency check avoid subjective logic errors.
The remainder is organized as follows: Section 2 introduces the related works especially the QoS guided heuristic algorithms task scheduling method. Section 3 simply reviews the existing PSO scheduling method and point out its shortcomings. Section 4 describes the details of our method that introduces AHP into PSO algorithm to help it adapt for tasks QoS requirements change. The simulations and comparisons analysis are presented in Section 5. Finally, a short conclusion is given in Section 6.

2. Related Works

In cloud system, whether cloud computing system or cloud storage system, million tasks waiting for dispatching. Scheduling these mass tasks is a challenge to cloud environment. The heuristic algorithms suggested to find reasonably solutions, such as ant colony based scheduling algorithm [1], Genetic algorithm (GA) based scheduling algorithms [2, 3], Simulated annealing based scheduling algorithms [4], particle swarm optimization (PSO) [5], and so on. They evaluate multi-QoS factors by fitness function by taking QoS factors as fitness function variable. However, the aimsof these scheduling algorithms are getting higher throughput and making load balance which make the weights of fitness functions are defined for these aims too. And once the weights are decided, they will not change through the all scheduling process. These scheduling methods consider from the aspect of system not from the aspect of user, namely the factor they used is almost system parameter. In addition, most of their aims are system efficiency improvement too.

We find these methods can not satisfy users’ QoS requirements and aware QoS preference. In order to address these problems, following we improve existing PSO based algorithm by integrating AHP method.

3. The PSO Based Task Scheduling Introduction

Particle Swarm Optimization (PSO) is a promising metaheuristic approach for solving diverse task scheduling problems as well as other application problems [6]. The simulations in reference [7] shown that PSO algorithm minimize makespan and obtained higher performance than other compared techniques did. So we choose the PSO as the basic task scheduling algorithm.

3.1. Standard PSO Introduction

In PSO, a swarm of particles spread in the search space and the position of a particle presents a solution, namely a task scheduling scheme in cloud storage system. Every particle may move to a new position depends on the local experience and the global experience heading toward the global optimum. The standard PSO is initialized with a population of random positioned particles and searches for the best position with best fitness. The details as follows:

The location of the ith particle is represented as \(X_i = (x_{i1}, \ldots, x_{in}, \ldots, x_{id}) \). The best previous position (which giving the best fitness value) of the ith particle is recorded and represented as \(P_i = (p_{i1}, \ldots, p_{in}, \ldots, p_{id}) \), which is also called pbest. The index of the best pbest among all the particles is represented by the symbol g. The location \(P_g \) is named gbest. The velocity for the ith particle is represented as \(V_i = (v_{i1}, \ldots, v_{in}, \ldots, v_{id}) \). The particle swarm optimization concept consists of, at each time step, changing the velocity and location of each particle toward its pbest and gbest locations according to the equations (1) and (2), respectively:

\[
v_{id} = w * v_{id} + c_1 * \text{rand()} * (p_{id} - x_{id}) + c_2 * \text{rand()} * (p_{gd} - x_{id}) \tag{1}
\]
\[x_{id} = x_{id} + v_{id} \] \hspace{1cm} (2)

Where \(w \) is inertia weight, \(c_1 \) and \(c_2 \) are acceleration constants, and \(\text{rand()} \) is a random function in the range \([0, 1]\).

The process for implementing PSO in cloud storage task schedule is as follows:

1. Set iteration generation \(I_t=1 \). Initialize a population which including \(m \) particles. For the \(i \)th particle, it has random location \(X_i \) in specified space and for the \(d \)th dimension of \(V_i \), \(v_{id} = \text{Rand2}() \cdot v_{\text{max,d}} \), where \(\text{Rand2}() \) is a random value in the range \([-1, 1]\);

2. Evaluate the fitness for each particle;

3. Compare the evaluated fitness value of each particle with its \(p\text{best} \). If current value is better than \(p\text{best} \), then set the current location as the \(p\text{best} \) location. Furthermore, if current value is better than \(g\text{best} \), then reset \(g\text{best} \) to the current index in particle array;

4. Change the velocity and location of the particle according to the equations (1) and (2);

5. \(I_t=I_t+1 \), loop to step 2 until fitness is met Expect Fitness Function Value \(f_e \) or \(I_t \) is achieve Max value.

3.2. The existing matrix of PSO

For the cloud storage is a special cloud system different from cloud computing ones. In cloud computing system, one task which ask some host to computing, can be assigned to every node and the only problem is the execution time, namely the low efficiency nodes cost longer time and the high efficiency nodes cost shorter time. But in cloud storage system, the task always asks remote node transfer it data, and we can’t ask a node offer the data it doesn’t have! In another words, for certain task of cloud storage system can only be assigned to some of node instead of every nodes.

As our former study, the traditional PSO of cloud computing using in cloud storage create many meaningless solutions. So \textit{Exist Matrix} [5] has to be used to create meaningful solutions. A improved PSO method is given in references [5] which is our foundation of this paper. We create \textit{Exist Matrix} by the file distribution table which storage in core node indicates which node has which data. And then in PSO scheduling, the initialize scheduling vector and the newscheduling created vector have to follow the \textit{Exist Matrix}. By this way, the meaningless solutions are limited.

3.3. Fitness function definition for multi-QoS

Assume there are \(m \) QoS factors which users are interest in. Let \(Q \) be the QoS vector, \(Q = \{q_1, q_2, \ldots, q_m\} \). For every node in cloud storage system has its own QoS vector at certain moment, denote the QoS vector of node \(i \) as \(Q_i = \{q_1^i, q_2^i, \ldots, q_m^i\} \).

For different QoS factor has different importance for use. We use different weight to describe their important level. Let \(W \) be the weight vector for \(Q \), denote as \(W = \{w_1, w_2, \ldots, w_m\} \). And then the fitness function definition as

\[
\bar{f}_i = w_1 q_1^i + w_2 q_2^i + \ldots + w_m q_m^i \sum w_i = 1 \hspace{1cm} (3)
\]

By this way, we integrate multi-QoS factor into one fitness function. For every scheduling scheme created by PSO, we evaluate their fitness value, and choose a max value or min
depends on the definition, here we choose the max value one. So the QoS factors q_i is the bigger the better.

As mentioned in Section 2, once the weights are decided, they will not change through the all scheduling process which is the reason why existing heuristical algorithm fail to aware task’s QoS preference. In our opinion, the weights have to adapt to QoS changes of different tasks.

Then the next problem is how to determine the weight for each factor to describe different importance of them. Existing methods mostly set weights by expert which cannot really reflect the user’s preferences. However, let users themselves to decide the weights is also difficult for users are not familiar with technical QoS factors.

Following we introduce AHP method to deal with these problems.

4. AHP Integrated to aware QoS preference

We found that users are lack of knowledge of technical terms. For example, the term “delay variation” user may understand “delay” but confuse “variation”. Then they cannot compare the importance between “delay variation” and ”Mean Time Between Failures (MTBF)” for they confuse these meanings. So let users themselves directly to compare technical terms is not reasonable in our opinion. In order to address this problem, we classify technical terms into QoS classes which users totally understood.

Past experience has taught us that user consider only four things: the cost, the efficiency, the quality and the security which receive more attentions in recent years. We class various QoS factors into these four main classes which users understand well. In order to avoid logical error, we introduce AHP method to help describing the QoS classes’ importance.

4.1. The analytic hierarchy process introduction

The analytic hierarchy process (AHP) [8] is a structured technique for organizing and analyzing complex decisions. Based on mathematics and psychology, it was developed by Thomas L. Saaty in the 1970s and has been extensively studied and refined since then.

Using AHP, firstly decompose the decision problem into a hierarchy of more easily comprehended sub-problems, each of which can be analyzed independently. For weights decide application, it is decompose the decision problem into a hierarchy of independent variables. Once the hierarchy is built, the decision makers systematically evaluate elements couple by couple. The AHP converts these evaluations to numerical values that can be processed and compared over the entire range of the problem. A numerical weight is derived for each element of the hierarchy which we need, allowing diverse and often incommensurable elements to be compared to one another in a rational and consistent way. This capability distinguishes the AHP from other decision making techniques.

The main steps as follows:

1. For certain objective, build judgment matrix A, AHP compares every two factors at a time. The element x_{ij} (i row and j column) indicate evaluated ranking of x_i compare to x_j.

The evaluated ranking is reflected by the rationality of ranking scale. A ranking scale is a scale of numbers that indicates how many times more important or dominant one element is over another with respect to the criterion or property with respect to which they are compared. We use the standard Saaty [8] 9 level scales as table 1 shows.
Table 1. Saaty scale of absolute numbers

<table>
<thead>
<tr>
<th>Intensity of Importance</th>
<th>Definition (Compare factor i to j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equal Importance</td>
</tr>
<tr>
<td>3</td>
<td>Moderate importance</td>
</tr>
<tr>
<td>5</td>
<td>Strong importance</td>
</tr>
<tr>
<td>7</td>
<td>Very strong or demonstrated importance</td>
</tr>
<tr>
<td>9</td>
<td>Extreme importance</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td>The intermediate value of above two adjacent judgment</td>
</tr>
</tbody>
</table>

The reciprocal of 1 to 9:

$a_{ij} = 1/a_{ji}$, $a_{ii} = 1$

2. Does consistency check for the judgment matrix A.

The consistency of judgment matrix is important and it asks ratings should be transitive that means: If A is better than B, and B is better than C, then A must be better than C. Further, ratings should be numerically consistent: if for factor P, M and G, where $P = 3M$ and $P = 5G$, then we have $3M = 5G$, namely $M = (5/3) G$. The latter condition is strong constraint, and in practice we ask the matrix A to satisfy the former one at least. If the matrix is inconsistent that means user consider A is better than B, and B is better than C, but the A isn’t better than C! It is an absolute logic error which we cannot accept, and then we have to rebuild the matrix A.

If the matrix A is consistency, assume λ is the largest eigenvalue of A, then the normalization vector $\{w_1, w_2, ..., w_n\}$, $\sum_{i=1}^{n} w_i = 1$ of λ is our needed weights.

The consistency checks process as follows, let n be the factor number:

Define Consistency Index (CI):

$$CI = \frac{\lambda - n}{n - 1} \quad (4)$$

If $CI = 0$, matrix A has complete consistency; if $CI \rightarrow 0$, matrix A has accepted consistency; the bigger CI the more inconsistency.

Define Consistency Ratio (CR):

$$CR = \frac{CI}{RI} \quad (5)$$

If $CR = \frac{CI}{RI} < 0.1$, then we think the consistency is in accepted range. The values of RI as Table 2 shows.

Table 2. Random consistency index (RI) [8]

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI</td>
<td>0</td>
<td>0</td>
<td>0.58</td>
<td>0.90</td>
<td>1.12</td>
<td>1.24</td>
<td>1.32</td>
<td>1.41</td>
<td>1.45</td>
<td>1.49</td>
<td>1.51</td>
</tr>
</tbody>
</table>

4.2. The AHP based weight defined for different class tasks

As mentioned above, there are four QoS class: Cost, Time, Quality and Security. Then we classify tasks into various task classes by different QoS requirements. We divided the tasks into the following six classes:

(1) Cost class (C1): in this class, tasks only take care of cost.
(2) Efficiency class (C2): in this class, tasks only take care of time.

(3) Quality class: in this class (C3), tasks only take care of transmission quality.

(4) Efficiency and Quality class (C4): in this class, tasks take care of time and quality at the same time. Such as the transmission of important and emergency files.

(5) Quality and Security class (C5): in this class, not only have to ensure the transmission quality, but also cannot reveal any information.

(6) Quality, Security, and Efficiency class (C6): Based on C5, in this class ask efficiency and the same time.

In this application, the QoS requirements of task class are the AHP target, and the four QoS classes are the evaluation elements.

Here, we use C1 as the example to show how the weights define. As C1 description, users of C1 tasks only care the cost, so the Cost factor C is extreme important than other three factors, so the number of C compare to other factors is 9 as the Table 1 given. Then the other three factors themselves are equal for users do not care them and the number 1 is used to indicate this situation. So we get following judgment matrix for C1.

\[
c_1 = \begin{bmatrix}
C & E & Q & S \\
C & 1 & 9 & 9 & 9 \\
E & \frac{1}{9} & 1 & 1 & 1 \\
Q & \frac{1}{9} & 1 & 1 & 1 \\
S & \frac{1}{9} & 1 & 1 & 1 \\
\end{bmatrix}
\]

Next we have to check the consistency of C1 judgment matrix to avoid logical error. The consistency check results are: CI=-0.00025, CR=-0.00028<1. So the c1 matrix satisfy the consistency check. And the \(\lambda \) is 3.9992, weight vector is [0.7500 0.0833 0.0833 0.0833] which means for class C1 the weights of PSO fitness function are 0.7500 for Cost factor, 0.0833 for other three factors. The formula (3) is redefined as:

\[
f_i = w_c \text{Cost} + w_e \text{Efficiency} + w_q \text{Quality} + w_s \text{Security} \quad (6)
\]

The weight vector is defined as \([W_c, W_e, W_q, W_s]\).

Classes C2 to C6 use similar process, we give the judgment matrix, and consistency check results and weight vectors are summarized as Table 3.
4.3. The weight definition of inner class

The final problem is how to weight the “technical QoS factors (TQFs)” in the QoS classes (QCs). We transfer TQFs into QCs as following operations.

4.3.1. Normalization:

We can see these QoS factors have totally different physical significance and also various units which prevent us to evaluate them in one function. The utility function is proposed to deal with this problem. A utility function can map a QoS factor value to a real number. Our
utility function is normalization function which compares to the max and min value and gets a real number between 0 and 1. The real number is independent of factors’ unit and range.

If the factor q_i is efficient attribute which means the bigger value, the better quality of factor q_i, the utility function of factor q_i is:

$$q_i = \begin{cases}
\frac{(q_i - \text{min } q_i)}{(\text{max } q_i - \text{min } q_i)}, & \text{if } \text{max } q_i \neq \text{min } q_i \\
1, & \text{if } \text{max } q_i = \text{min } q_i
\end{cases} \quad (7)$$

If the factor q_i is cost attribute which means the smaller value, the better quality of factor q_i, the utility function of factor q_i is:

$$q_i = \begin{cases}
1, & \text{if } q_i = \text{min } q_i \\
\frac{(\text{max } q_i - q_i)}{(\text{max } q_i - \text{min } q_i)}, & \text{if } q_i \neq \text{min } q_i
\end{cases} \quad (8)$$

where $\text{min } q_i$ is the min value of q_i, and $\text{max } q_i$ is the max value of q_i.

4.3.2. Set weights of TQFs:

The weights for QoS factors inside classes are decided by experts’ knowledge and by this way can use experts’ experience.

The w_is are decided by “Optimal Sequence Method” to reduce subjective judgment as follows:

Firstly, determine scale is described by 1, 2, 3, 4, 5 levels, the bigger number indicate the more importance. Then compare factors couple by couple, if one factor’s importance level is set to 5, then the another one’s importance level is 0; if one is 3, then another is 2. By this way, the Judgement Matrix is built which is a $n \times n$ square matrix, n is the number of factors. And the value w_{ij} (row i, column j) is the importance of factor i compare to j, such as $w_{ij}=3$, then opposite $w_{ji}=5-3=2$ which indicate the importance of factor j compare to i, $i \neq j$.

The sum of rows $\sum_i w_{ij}$ indicate the importance of factor i in all factors. Take the sum of all rows and columns $\sum_j w_{ij}$ as the denominator which indicate the importance level of factor i in all factors, and the $\sum_i w_{ij}$ as numerator, then the quotient is the weight of the factor i:

$$W_i = \frac{\sum_i w_{ij}}{\sum_j \sum_i w_{ij}} \quad (9)$$

4.4. AHP-PSO task scheduling algorithm

On the basis of the above works, we improved existing PSO based task scheduling algorithm by adjusting the weights of fitness function according to different class tasks. For example, for a Quality class task, then the PSO fitness function uses Quality weights as formal (6). The class weights defined process as Figure 1 shows.
Figure 1. Two levels weights definition process

Then the AHP-PSO task scheduling process as the Figure 2 shows. When a batch tasks are arrive in unit time, firstly classify these tasks into four QoS classes. Secondly, for the different QoS class tasks use according weights for fitness function. Finally, do the standard PSO scheduling process as references [5] does.

Figure 2. AHP-PSO task scheduling process

5. Simulations and Analysis

5.1. Simulation environment

We developed a Cloud Storage Simulation System (CS3) by Matlab7.0. This system includes three main modules: the Task Scheduling Module, theUpdate Module, and theEvaluation Module as the Figure 3 shows.
The row of Task Matrix task vector which contains task size and task’ QoS requirements, denoted as task(Tsize, q_1, q_2, ..., q_n). If task does not require certain QoS factor, the according value set to be NULL.

The Nodes Matrix contains the information of nodes, such as the node QoS similar to task vector and the nodes relation describe weather two nodes are connected or not, denoted as node vector(node_i-node_j, q_1, q_2, ..., q_n), where if i=j, the q describe the node_i’QoS factor, and if i\neq j, the q describe the connect QoS factor between node_i and node_j.

The system takes Task Matrix and Node Matrix as the input. Then the “Task Scheduling Module” dispatch task.

The Update Module update the QoS factor value of Nodes Matrix after one scheduling scheme is applied.

Finally the Evaluation Module evaluates the scheme effect by user satisfaction rate. If task a dispatched to node b, then we compare the task vector and node vector, only all the QoS factor of the task are satisfied by node, the scheduling scheme is thought satisfy the task.

User satisfaction rate is defined as:

\[
USR(\%) = \frac{\text{satisfied task number}}{\text{total task number}} \times 100\% \tag{10}
\]

Tasks group created by CS^3 have 1000 tasks, and the number of C1 tasks>>C2 tasks>C3 tasks >C4 tasks>C5 tasks>C6 tasks. In practice, common tasks(C1) far more than special task is a common phenomenon. There are 20 resource nodes of the simulation system, and 10 of them is cheap cost, 5 of them can ensure quality,3 of them can ensure both quality and security(have encryption function). Following simulations, if not addition explains, using the same task group.

5.2. Simulation result and analysis

In this section, we compare the USR, task completion time, execution time of standard PSO and our AHP-PSO to see the effect of real-time adjust the weights of the fitness function. In order to avoid some random interference, every simulation is repeated three times.
Simultation 1: the USR comparison

The USR comparison result as the Figure 4 shows.

![Figure 4. The USR comparison of standard PSO and AHP-PSO](image)

We can see AHP-PSO algorithm has higher USR than standard PSO, from about 40% up to about 70%. This demonstrates the weights of fitness function change with different class tasks can make the standard PSO has QoS preference awareness ability.

However, the USR is not as high as our expected. We try to improve USR by change the AHP weights, however, the effect is not obvious. Then we check the scheduling results find that many special tasks (like C5, C6 tasks) are dispatched to nodes which cannot satisfy their QoS requirement. Because many C1 tasks arrived firstly and are dispatched to all nodes make there aren’t suitable nodes dispatching to special tasks.

In order to address this problem, a nature method is hierarchical scheduling. Let privilege levels of tasks are: C6 > C5 > C4 > C3 > C2 > C1. We schedule the higher level tasks firstly and lower level tasks share the remainder resources as the Figure 5 shows.

![Figure 5. Hierarchical task scheduling](image)

The hierarchical scheduling effect as the Figure 6 shows. By this way, we get satisfying USR about 90% demonstrate the hierarchical scheduling is necessary. So our AHP-PSO method becomes to hierarchical AHP-PSO.
Figure 6. The USR comparison of AHP-PSO and hierarchical AHP-PSO

Simulation 2: The execution time comparison

Then the execution time of standard PSO and our hierarchical AHP-PSO is as Figure 7 shows. The execution time means the time between the algorithms receive the input and give the scheduling solution.

We can see from Figure 7, the hierarchical AHP-PSO cost more time than standard PSO. The reason is our hierarchical AHP-PSO indeed does more work than standard PSO that classify tasks into different classes and adjust the fitness function weights for classes.

However, addition operation does not cost too much time and with the scale of tasks increase, the weight adjustment impact is became less. Here we use the proportion of weight adjustment time in all execution time as the evaluation value to compare the efficiency of hierarchical AHP-PSO and PSO.

Let the hierarchical AHP-PSO execution time is T_a; the PSO execution time is T_p; then the classification process and weight adjustment time T_w can be approximately calculated as $T_w = T_a - T_p$, and the impact evaluation ratio is defined as: ratio = T_w / T_p. The relation of task scale and the ratio as the Table 4 shows. We can see when we schedule 1000 tasks at one time, the ratio only 1.55%.
Table 4. The effect of classification and weight adjustment

<table>
<thead>
<tr>
<th>task scale</th>
<th>10</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO</td>
<td>4</td>
<td>56</td>
<td>645</td>
</tr>
<tr>
<td>Hierarchical AHP-PSO</td>
<td>5</td>
<td>58</td>
<td>655</td>
</tr>
<tr>
<td>ratio</td>
<td>25.00%</td>
<td>3.57%</td>
<td>1.55%</td>
</tr>
</tbody>
</table>

Finally, we compare the task completion time of the two algorithms as figure 8 shows.

![Figure 8](image)

Figure 8. The comparison of task completion time (Unit: millisecond)

We find out that the completion time of hierarchical AHP-PSO is longer than PSO, but also not so much, only increase about 10%. The addition time is because the hierarchical AHP algorithm is satisfy users’ QoS requirement firstly, and then choose the least completion time scheduling schema. However, the standard PSO is direct to find the least completion time scheduling schema. As the idea of SaaS (Software-as-a-service), every application functions in cloud system is given to uses as service. So sacrifice some efficiency for USR is worth in our opinion.

6. Conclusion

In this paper, we point out that existing task scheduling algorithms have following main shortcomings: 1) These algorithms almost consider from the aspect of system not from the aspect of user which result in low user satisfaction rate; 2) These algorithms lack the QoS preference awareness ability;

The first problem is because users don’t understand the QoS technical terms and cannot describe their QoS requirements of technical terms. We classify QoS factors into four main QoS class which users understand well. By this way, users can give judgment of QoS class important. In order to help users avoid logical error, the AHPs suggested to be the weights decide method.

Then we improve existing standard PSO scheduling by use different weights for different QoS classes to make PSO have QoS preference awareness ability.

The simulations show our method gets obviously higher user satisfaction rate and maintains the efficiency at the same time.

Finally, the simulations also point out that the hierarchical scheduling is necessary to avoid the common tasks take over the special resource.
Acknowledgments

This work was supported in part by grants from:
1) The Application basic research project of Sichuan Province (2013JY0064);
2) The Scientific Research Foundation of CUIT (Chengdu University of Information Technology), No.KYTZ201121;
3) The Research Fund Young of Middle-Aged Academic Leaders in CUIT(J201107);
4) The Sichuan Province Science and Technology Support Plan(No.2011GZ0195);
5) The Scientific Research Project of Education Department in Sichuan Province(No.10ZB093).

References

Authors

Juan Wang

Juan Wang was born in China in 1981 and received her B.S. degree of computer science in 2003, and the M.S. degree of Computer Architecture and Ph.D degree of Information Security from University of Electronics and Technology of China (UESTC) in 2006 and 2010. And being a visiting scholar at University of North Carolina at Charlotte (UNCC) from 2007.9 to 2008.9. Her research interests include network security and cloud storage. Email: wangjuan@cuit.edu.cn.
Fei Li

Fei Li was born in China in 1966. He received his M.S. degree of computer science in 1993.7 from Chengdu University of Science and Technology. Now he is the dean of thenetwork engineering school of Chengdu University of Information Technology. His research interests include grid computing and the Internet of things technology. Email: lifei@cuit.edu.cn

Luqiao Zhang

Luqiao Zhang was born in China in 1983, received B.S. degree and M.S. degree in computer science from University of Electronics andTechnology of China (UESTC) in 2003 and 2006, respectively. He is now a Ph.D.candidate in University of Electronics and Technology of China (UESTC). His research interests include wireless sensor network and mobile wireless P2P. Email: zhanglq@cuit.edu.cn