Research on C5.0 Algorithm Improvement and the Test in Lightning Disaster Statistics

Shuonan Hou1, Rongtao Hou2, Xinming Shi2, Jun Wang2 and Chengshang Yuan2

1College of Information Science and Engineering, Northeastern University, ShenYang 110819, Liaoning, China
2School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

Abstract

After analysis the importance of continuous attributes in the C5.0 algorithm processing, and consider the shortcomings of discretization method of C5 algorithm, this paper proposes a new method based on Rough set theory- information entropy- discernible matrix discretization (RSIEDM). The method uses rough, information entropy and Discernible matrix that can be more reasonable and more accurately to continuously attribute discretization, and making created decision tree have better accuracy. In the application of optimization of lightning disaster statistics and evaluation result of lightning disaster, the algorithm which has obtained a better effect.

Keywords: decision tree, discretization, rough set, information entropy, discernible matrix

1. Introduction

Decision tree has been widely used in classification, machine learning, and knowledge discovery. The decision tree method originated from concept learning system (CLS) which has the drawback that it can not deal with big problems. In 1986, J.Ross Quinlan proposed a paper named “Induction of Decision Tree”, he proposed a new method of Interative-Dichotomizer 3(ID3). The ID3 chooses properties according to the information gain, so it will easily choose more candidates whose values are relatively large. Quinlan improved ID3 algorithm in 1993 and proposed more popular algorithm C4.5 [1-2]. C5.0 is an improved algorithm from C4.5. ID3 assumes that the properties are discrete values; however, many properties are continuous in practical situation. These properties are discretized by C4.5/C5.0 in the way of range dividing, which reduces the classification accuracy.

Rough set that proposed by Pawlak is a new mathematical theory for dealing with imprecise, incomplete and incompatible knowledge. It has obtained widespread application in various aspects. Many valuable result of the study based on the rough set model have been got by researchers. Nguyen proposed a method that based on rough set and boolean logical. This method can find all the possible discrete data set, but its algorithm complexity is exponential, which reduces the possibility of application in practical situation [7]. Some researchers proposed several improved greedy algorithm to overcome this drawback [6, 8]. These algorithms are local optimization search algorithm which based on breakpoint separability of instance. Some researchers used genetic algorithm, which belong to global search algorithm, to search the best discretization set breakpoints [9, 10]. Some researchers proposed a kind of algorithm which based on the importance of attributes [11]. Some researchers proposed a discretization method with the combination of polynomial hyper surface and support vector machine (SVM) [12]. Some researchers proposed a clouds-mode based discretization method [13]. Some researchers Introduced fuzziness into discretization...
some researchers discussed Discretization of information granularity [15]. Some researchers proposed the attributes-clustering based discretization method [16]. To improve the accuracy of discretization method, this paper proposed an Attribute discretization method based on RSIEDM (Rough Set Theory-Information Entropy and Discernible Matrix) to overcome the drawback in the procedure of C5.0. RSIEDM use Theory-Information Entropy to discretize the continuous attributes and then reduce attributes through discernibility matrix.

2. Decision Tree Classification Algorithm

Classification is a greedy algorithm. When a training set was given, decision tree partitioning feature attribute space by recursion, then pick the highest information gain rate of properties as training attribute of current node to guarantee the simplest decision tree [3].

2.1 Create Decision Tree

One of the attribute training conditions was necessarily selected to partition data set into several smaller subset in every recursion of creating decision tree. C4.5/C5.0 algorithm test attributes by information gain ratio, so the growing procedure of decision tree will end at a necessary constraint condition, such as when all the nodes are divided into their class, and all the records have the same attribute. Also other standard can be used to terminate decision tree growth process in advance, such as pre pruning technology [1, 4]. Assume that S is a training sample set. X which contains n attributes divides S into n subsets S1, S2… Sn. Assume the count of samples in S is |S|, \(freq(C_i, S) \) is the number of sample which belongs to Ci \(i=1,2,…,N \), the probability of a sample belongs to Ci is \(\log_2 \left(\frac{freq(C_i, S)}{|S|} \right) \). The training set can be presented as formula (1). The \(\text{info}(S) \) is the gross information content which is necessary for identify all the samples in S.

\[
\text{info}(S) = - \sum_{i=1}^{N} \frac{|S_i|}{|S|} \log_2 \left(\frac{freq(C_i, S)}{|S|} \right)
\]

After divide S into n subsets, the information entropy of each subset can be calculated. The value of expectation of S is shown in formula (2).

\[
\text{info}_i(S) = \sum_{j=1}^{n} \left(\frac{|S_j|}{|S|} \times \text{info}(S_j) \right)
\]

In order to measure the information of S which partitioned by X according to attribute verification, the information gain standard gain(X) shown in formula (3) was used. The attribute with the highest information gain was chose for partition.

\[
gain(X) = \text{info}(S) - \text{info}_X(S_X)
\]

The method divided S into \(S_1, S_2, …, S_n \) based on the different values of X, the potential information produced by these subsets can be presented by formula (4).

\[
\text{Split Info}(X) = \sum_{i=1}^{n} \left(\frac{|S_i|}{|S|} \times \log_2 \left(\frac{|S_i|}{|S|} \right) \right)
\]

Hence, the information gain ratio of S partitioned by X is shown in formula (5).

\[
\text{Gain ratio} = \frac{\Delta \text{info}}{\text{Split Info}}
\]
C5.0 algorithm regards the attribute with highest information gain ratio as training attribute, and then create decision tree in the way of “divide and rule”. C4.5/C5.0 prunes the original decision tree by post-pruning algorithm. Pruning a decision tree usually means that to replace one or numbers of tree by a leaf node, and then the node with highest probability of occurrence is regarded as a class. In C4.5/C5.0, a branch is also allowed to be a candidate for replacing a sub-tree [1, 5].

2.2 Discretize the continuous valued attribute

C5.0 algorithm discretized the continuous valued attribute better than ID3. However, it is a heavy computation algorithm. If the amount of these continuous valued attributes is huge, the computation amount will be more. According to the lightning disaster database that collected by meteorological department, the attributes in lightning disaster database are shown in Table 1.

<table>
<thead>
<tr>
<th>Attribute description</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT</td>
<td>Datetime</td>
</tr>
<tr>
<td>WD</td>
<td>0-1</td>
</tr>
<tr>
<td>LN</td>
<td>0-1</td>
</tr>
<tr>
<td>RN</td>
<td>0-1</td>
</tr>
<tr>
<td>OME</td>
<td>0-1</td>
</tr>
<tr>
<td>ND</td>
<td>0-∞</td>
</tr>
<tr>
<td>NI</td>
<td>0-∞</td>
</tr>
<tr>
<td>DEL</td>
<td>0-∞</td>
</tr>
<tr>
<td>IEL</td>
<td>0-∞</td>
</tr>
<tr>
<td>NC</td>
<td>0-∞</td>
</tr>
</tbody>
</table>

The top 5 discrete attributes are occurrence time (OT), wind (WD), lighting (LN), raining (RN), and other meteorological elements. The next 5 attributes are continuous valued. They are number of death (ND), number of injury (NI), direct economic loss (DEL), indirect economic loss (IEL), and number of casualties (NC). 0-1 stands for the value if the accident happened, 0-∞ stands for the continuous value. A means normal, B means serious, C means critical. The numbers of samples in class A, B, and C respectively are 1579 (81%), 317 (16.2%) and 24 (2.7%). The total number is 1947. 5 attributes among them are continuous valued attribute which are the primary attributes that need to be discretized. According to these continuous valued attributes, the time efficiency and accuracy of C5.0 is reduced.

3. Design Discretized Research based on Rough Set-information Entropy-Discernible Matrix

Discretization of continuous attributes is essentially divide the range of properties into some discretization intervals within a number of discretized division points settled in certain
range of values of the continuous attributes. Many discretization methods had been proposed, and different method may lead to different result. All these methods should follow such principles: 1. the dimension (is) as little as possible after discretized; 2. most information of attribute should be maintained after discretized.

Discretization often affects the process and the final results of the algorithm. Hence, an appropriate discretized method should be used. The RSIEDM reduce the redundant attributes and attribute values on the basis of considering all the attributes to improve accuracy of discretization. The procedure is mainly divided into the following steps:

1. Calculate separately for each attribute discretization for the initial breakpoints set;
2. Reduce initial breakpoints set, and then gain the breakpoints subset. Regard them as breakpoints set in the actual procedure of discretized.

Among above steps, the last two steps are the critical steps in the procedure of discretization. Discretization is not only for those continuous valued attributes, but also for those discrete attributes. In other words, it is necessary to discretize an attribute which is discrete.

3.1 Algorithm of initial breakpoints set

To determine the initial breakpoint set is the basis to solve the problem of attribute discretization. On the premise of guarantee the distinguishing relationship of decision table, how to make the base of the initial set breakpoints as small as possible to have very important sense to the subsequent work. It can not only reduce the amount of calculation of the initial set breakpoints, and can reduce the computation time and space.

Definition 1. Ordered sequence of attribute values. Decision table DT={u, R, V, f}, R=CU{d}. Continuous attributes a∈C. Assume that Ia=[V_a^B, V_a^T] is value range of a, if V_a^B<V_a^1<V_a^2<...<V_a^T, then sequence S={V_a^B, V_a^1, V_a^2, ..., V_a^T} is called ordered sequence of attribute values. V_a^B is the greatest lower bound of s, called B(s). V_a^T is the least upper bound of s, called T(S).

According to Definition 1, the relationship of ordered sequences S1 and S2 may have following situations shown in Figure 1 in which S[m]=min(T(S1),T(S2)), S[n]=max(B(S1), B(S2)).

![Figure 1. Relationship between Ordered sequences of attribute value S1and S2](image-url)
The values of attribute a are divided into several subsets on the basis of decision condition. These subsets make up their corresponding ordered sequences. The initial breakpoint sets are empty set. If S_i and S_j ($i<j$) in ordered sequences are in the situations of Figure 1 (a) and (b), then $\max(B(S_i),B(S_j))$ should be added to P. Continue checking the remained attributes, decide the sequence number m and n of $\max(B(S_i),B(S_j))$ and $\min(T(S_i),T(S_j))$, then add $S[m]$ and $S[n]$ into P. For element $S[k]$ in S between $S[m]$ and $S[n]$, if $S[k-1]$ and $S[k]$ are in the S_i or S_j in the same time, then ignore $S[k]$, or add $S[k]$ into P. Finally, check whether there is any sequence of attribute values, if no sequence exists, then set P is a breakpoint set of a.

3.2 The information entropy of rough set attributes discretization method

Information entropy is a measure of the uncertainty in information system attribute. Method based on information entropy uses information provided by classes. The following steps are information entropy based discretization method.

Definition 2. Information entropy of subset X. Decision table $DT=\{u, R, V, f\}$, $R=C \cup \{d\}$, $X \subseteq U$, the base of subset X is $|X|$, the instance number of decision attribute $r(i=1,2,\ldots,r(d))$ is n_i, we can define the information entropy of subset X as formula (6):

$$H(X) = -\sum_{i=1}^{r(d)} P_i \log_2 P_i = -\frac{n_i}{|X|}$$ \hspace{1cm} (6)

Usually, information entropy $H(X) \geq 0$. The smaller the $H(X)$ is, which indicates that individual decision attribute values are dominant, the smaller the degree of chaos. Especially when if and only if the attribute values of instance of X are the same, $H(X)=0$. This nature guarantees the breakpoint reduction algorithm does not change the compatible degree of decision table.

Definition 3. Breakpoint information entropy. If breakpoint c^a_j ($a \in C$) in subset $X \subseteq U$ and decision attribute values is $f(\cdot)$ ($i=1,2,\ldots,r(d)$):

$$b^X_i(c^a_j) = \{x \in X \wedge f(x,a) < f(c^a_j, a)\}$$

$$t^X_i(c^a_j) = \{x \in X \wedge f(x,a) > f(c^a_j, a)\}$$

Let

$$b^X(c^a_j) = \sum_{i=1}^{r(d)} b^X_i(c^a_j), t^X(c^a_j) = \sum_{i=1}^{r(d)} t^X_i(c^a_j)$$

Then, breakpoint c^a_j divide set X into two subsets X_b and X_t, and

$$H(X_b) = -\sum_{i=1}^{r(d)} P_i \log_2 P_i, P_i = \frac{b^X_i(c^a_j)}{b^X(c^a_j)}$$

$$H(X_t) = -\sum_{i=1}^{r(d)} q_i \log_2 q_i, q_i = \frac{t^X_i(c^a_j)}{t^X(c^a_j)}$$

Hence, the information entropy of X according to breakpoint c^a_j is formula (7).

$$H^X(c^a_j) = \frac{|X_b|}{|X|} H(X_b) + \frac{|X_t|}{|X|} H(X_t)$$ \hspace{1cm} (7)
For concluding information entropy, assume that \(L = \{Y_1, Y_2, \ldots, Y_m\} \) is an equivalence class which divided from decision table by set \(Q \), then after a new breakpoint \(c \notin Q \) be added, the new information entropy is as shown in formula (8).

\[
H(c, L) = H^{Y_1}(c) + H^{Y_2}(c) + \ldots + H^{Y_m}(c)
\]

(8)

\(H(c, L) \) becomes smaller, which indicates that the decision attributes of new equivalence class become single after added the breakpoint. Hence, \(H(c, L) \) indicates the importance of breakpoint \(c \).

Assume \(Q \) is reduction breakpoint set, \(L \) is equivalence set that partitioned by breakpoint set \(Q \), \(H \) is the information entropy of decision table which initial value is \(H = H(u) \) in formula (6). In practical situation, not all the possible cut points should be took into consideration. Fayyad and Irani[18] proved that the best cut point always between different class instances.

To be sure: in the above algorithm, the breakpoint with fewer attribute breakpoints should have been chosen when two breakpoints information entropy are equal.

3.3 Attribute reduction of discernibility matrix

After the continuous values of attributes are divided into discrete space by breakpoints, two drawbacks will be encountered. A) If there are too many decision classes in decision table, the particle number of decision table after discretization will be high, in subsequent planning or classification process the superiority of the discrete data will not be manifested. B) The discretization method will easily produce some isolated range for the decision table with noise. It seriously affected the quality of data mining model formed subsequently. To avoid these drawbacks, discernibility matrix could be used to optimize discretization procedure.

Definition 4. Redundant attribute. For \(a_i \in B \subseteq C \), if \(POS_B(D) = POS_{B-\{a_i\}}(D) \), then \(a_i \) is a redundant attribute, which means it will not affect the \(B \)-lower approximation of \(D \), or \(d_i \) is necessary.

Definition 5. Relative core and reduction of attribute. Assume \(B \subseteq C \), if \(POS_B(D) = POS_C(D) \), \(\forall a_i \in B \) and \(POS_{B-\{a_i\}}(D) \neq POS_B(D) \), then \(B \) is a reduction of \(A \). The set composed of all the decision attributes \(D \) in condition attribute set \(C \) is called core of \(C \) (relative core). It is also a set which composed of single element in discernibility matrix. Discernibility matrices of \(C \) and its core are \(n \times n \) symmetric matrices, \(n = \text{card}(U) \), and any element \(a(x, y) \) in them is shown as follows:

\[
\alpha(x, y) = \{ a \in C \mid f(x, a) \neq f(y, a), x \in [x]_{\text{Ind}(D)}, y \in [y]_{\text{Ind}(D)}, [x]_{\text{Ind}(D)} \neq [y]_{\text{Ind}(D)} \}
\]

Core of \(C \) is a set composed of all the single element in the discernibility matrix.
Figure 2. Decision table

Figure 2 shows the basic set of C after attribute discretized. Then the discernibility matrix shown in Figure 3 could be deduced. X_1, X_2, \ldots, X_n in the matrix stand for each discretized lightning record. We can conclude from Figure 3 that $\{a_2\}$ is the core of C, its discernibility matrix is $f_C(D) = a_2(a_1 + a_3) = a_1a_2 + a_2a_3$. $f_C(D)$ shows there are two reduction of decision table, they are $\{a_1, a_2\}$, $\{a_2, a_3\}$.

Further reduction of attributes could be processed after attributes reduction. The basic sets of system can be gained even if a part of unnecessary values are wiped out. To find the procedure of finding core and reduction of attribute values is the same as the procedure of finding the core and reduction of attributes.

All the calculations are based on discernibility matrix, the definition of discernibility functions are different. A discernibility function should be created corresponding to number of basic sets.

After above procedures, the breakpoints set P^a of continuous value $a \in C$ can be calculated. After dealing with the other attributes with the same method, we can get all the breakpoints set P. At this point, the procedure of discretized method is ended.
4. Body Area Sensor Network

To verify the effectiveness of the algorithm and compare the performance of the algorithm with other discrete algorithm, we tested data sets (Iris, Breast, Wine, Sonar) in database of UCI and lightning data (LzData). The continuous valued attributes in lightning database are direct economic loss, indirect economic loss, number of death, number of injury, and total of injury. The information of data used in experiments was shown in Table 2.

Table 2. Description of information of data set

<table>
<thead>
<tr>
<th>Name of dataset</th>
<th>Number of continuous attribute</th>
<th>Number of class</th>
<th>Number of instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>4</td>
<td>3</td>
<td>150</td>
</tr>
<tr>
<td>Breast</td>
<td>9</td>
<td>2</td>
<td>683</td>
</tr>
<tr>
<td>Wine</td>
<td>9</td>
<td>7</td>
<td>214</td>
</tr>
<tr>
<td>Sonar</td>
<td>60</td>
<td>2</td>
<td>208</td>
</tr>
<tr>
<td>LzData</td>
<td>5</td>
<td>3</td>
<td>600</td>
</tr>
</tbody>
</table>

In contrast, we proposed RSIEDM in this paper and Ext_Chi2 for discretization. Ext_Chi2 is an improved algorithm of Chi2 which is supervised and based on statistics theory. For comparing results, this article used the current popular data mining classification SVM (Support vector machine) to classify the discrete data. DMBench 1.0 alpha is software designed for data mining which contains SVM algorithm. The method of One to many(1-V-r) was chosen for classification, C-SVC was chose for model type, RBF was chosen for kernel function, [1, 100] is the search range for penalty factor, [0.05, 0.5] is search range for kernel function parameters γ. The 80% of data set was chosen for the training set; the remained 20% of data set was chose for test set. After classification, the prediction accuracy was shown in Table 3.

Table 3. Classification results of SVM(1-V-r)

<table>
<thead>
<tr>
<th>Comparative indicators</th>
<th>Name of dataset</th>
<th>Discretized method</th>
<th>Ext_Chi2</th>
<th>RSIEDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction accuracy(%)</td>
<td>Iris</td>
<td>100.0</td>
<td>93.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breast</td>
<td>65.2</td>
<td>74.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wine</td>
<td>95.6</td>
<td>97.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sonar</td>
<td>60.6</td>
<td>76.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LzData</td>
<td>65.2</td>
<td>73.7</td>
<td></td>
</tr>
</tbody>
</table>

The experiment result shows that the proposed algorithm has certain advantages compared with other algorithms when dealing with a large amount of dataset. Ext_chi2 gain 100% accuracy when dealing with Iris dataset due to its bottom-up algorithm. It can always get good effect when dealing with small sample data. However, for the dataset with a large number of instances, the series of Chi2 Algorithm not only processing slowly, but also gain worse effect than the top-down algorithm.

5. Conclusion

After analyzing the information entropy based discretization method, this paper proposed RSIEDM, which based on discernibility matrix that is in rough set theory, for reducing attributes. The algorithm not only maintained the distinguishing relationship, but also didn't change the compatible degree of decision table. From the results of the experiment, the
average prediction accuracy is higher than C5.0 algorithm. Furthermore, our proposed algorithm shows high performance when dealing with large amount of data. It is a useful discretization method. The future research work includes improving the algorithm, combining rough sets theory and other heuristic algorithms, further improving the efficiency of solving the problem of large-scale data.

Acknowledgements

Our research was supported by the National Natural Science Foundation of China(Grant No.61373064), University Graduate and Undergraduate Student Scientific Research Innovation Projects CXLX12_0515 and 201310300016Z in Jiangsu Province. And was supported by the teaching innovation project13JY001 of Nanjing University of information science & technology yet.

References

Authors

Shuonan Hou is a master degree student of College of Information Science and Engineering of Northeastern University. His main research fields are Power system optimization and artificial intelligence now. He obtained his B.S. degree in School of Automation of Northwestern Polytechnical University, China in 2008.

Rongtao Hou Professor and Phd supervisor of School of Computer and Software in Nanjing University of Information Science and technology. His main research directions are chaotic information identification, feature extraction, machine vision, signal processing. He obtained master degree and Phd from Beijing University of Aeronautics and Astronautics and Northeastern University in China successively.

Xinming Shi master degree student. He graduated from School of Computer and Software of Nanjing University of Information Science & Technology. Now he is working for data mining, information processing and artificial intelligence areas.

Jun Wang Professor of Najing University of information & Technology. His current research interests are in performance evaluation for wireless sensor networks and Internet of Things.

Chengsheng Yuan Chengsheng Yuan is a graduate student now. He is working for the areas about information security, data mining, and artificial intelligence.