Resource Allocation and Power Control Scheme for Interference Avoidance in an LTE-Advanced Cellular Networks with Device-to-Device Communication

Tae-Sub Kim¹, Kwang-Hyung Lee³, Seungwan Ryu² and Choong-Ho Cho¹

¹Dept. of Computer and Information Science, Korea University, Chungnam, Korea
²Dept. of Information Systems, Chung-Ang University, Gyeonggi, Korea
³Dept. of Bio and Brain Engineering, KAIST, Daejeon, Korea
ree31206@korea.ac.kr, khlee@kaist.ac.kr, ryu@cau.ac.kr, chcho@korea.ac.kr

Abstract

In this paper, we propose a resource allocation and Tx power control scheme, called resource allocation and power control (RAPC) in an LTE-Advanced device-to-device (D2D) network. In the proposed scheme, the macro base station (mBS) and D2D senders (D2DSs) service macro user equipment (mUEs) and D2D receivers (D2DRs) use the different frequency bands and Tx power chosen as D2D links’ locations in inner and outer zones to reduce interference substantially. We analyze and compare the proposed scheme and random resource allocation (RRA) scheme with fractional frequency reuse (FFR) systems in terms of the system throughput for DL and outage probability according to the number of D2D user’s (D2DR) traffic density. Simulation results show that the RAPC scheme has better performance than the random resource allocation (RRA) scheme performance in terms of the system throughput and outage probability for mUEs and D2DRs.

Keywords: LTE-Advanced, Device-to-Device Communication, Interference Avoidance, Resource Allocation, Power control

1. Introduction

In recent years, with the development of different kinds of multimedia services, there is an ever increasing demand for higher data rate transmission and higher spectral efficiency. For this reason, Device-to-Device (D2D) communication, which allows devices to communicate directly by sharing the resources with the cellular network, has received increasing attention as a promising technology to improve spectral efficiency. It provides several advantages, such as improved spectral efficiency, reduced power consumption, increased system throughput, and decreased mBS load [1–3]. However, when the co-channel operation is used with existing cellular networks, some severe interference between cellular links and D2D links occur. Hence, the interference cancellation or management schemes are imperative between cellular links and D2D links in order to avoid the decrease of total cell throughput.

To solve this problem, research on reducing interference between D2DRs and mUEs in cellular networks supporting D2D communication was conducted. When earlier studies are examined, in [1], they suggested the technique of using D2D links’ channels first if frequency bands were not already being utilized in the mBS, and observing the D2D links’ channel status if all frequency bands are used and getting assigned the best channel from mBS. Also, in [4], the technique of measuring one’s own channel gain and the channel gain till mUE that uses an applicable channel, and assigns the lowest gaining channel to the D2D terminal, was
suggested, but such studies focus on the cell center interference control and do not improve the performance of mUEs for the cell edge. Also, they are not designed to respond to strong signals that are received from the cell center for D2DRs. Lastly, in [5], resource allocation that considers the interference and power optimization technique was studied. However, in this case, there was a high possibility of heavy collisions occurring between the two links due to random allocation of frequency resources regardless of the cellular link and D2D link. Therefore, we can consider the resource allocation and power control methods that reduce the interference of the cellular link and D2D link by using the frequency reuse scheme, so that the performance at the cell-edge of cellular links can be improved and the D2D link can respond to a strong signal at the cell center.

As shown in Figure 1, several schemes of inter-cell interference mitigation are being considered in OFDMA networks, such as fractional frequency reuse (FFR) [6] and soft frequency reuse (SFR) [7]. Partial reuse adopts different reuse factors for the cell center and cell edge. Thus, partial reuse schemes can achieve a much higher network capacity compared to traditional frequency reuse schemes and can simultaneously reduce inter-cell interference compared to a frequency reuse factor (FRF) of 1. However, since the cell edges use a higher reuse factor, the cell edge spectral efficiency may be significantly degraded compared to the cell center.

In this paper, we propose a resource allocation and Tx power control scheme, called resource allocation and power control (RAPC) in an LTE-Advanced device-to-device (D2D) network. We analyze and compare the proposed scheme and random resource allocation (RRA) scheme with fractional frequency reuse (FFR) [6] systems in terms of the system throughput for DL and outage probability according to the number of D2D user’s (D2DR) traffic density. Simulation results show that the RAPC scheme has better performance than the random resource allocation (RRA) scheme performance in terms of the system throughput and outage probability for mUEs and D2DRs.
2. System Model

2.1. System Topology and Path Loss Model [8, 9]

As shown in Figure 2, we consider a system topology with 7 hexagonal macrocells where the inter-site distance is \(D_{\text{inter}} \) designated in meters (m) to analyze the performance. We assume that each mBS is located at the center of each macrocell and has a cell identification (ID). For example, an mBS with cell ID = i is described as \(\text{mBS}_i \). mUEs and D2DSs are randomly deployed in the macrocell coverage and are stationary. In each cell, D2DSs are distributed in a grid pattern with a distance of 50m in each cell, and D2DRs are separated from their corresponding D2DSs with distance \(q \), where \(q \) is a uniform random variable in [1 20] m. The target cell is the center macrocell, \(\text{mBS}_1 \).

![Figure 2. System Topology](image)

We consider a path loss model for mUE and D2DR [8], where \(PL_{\text{mUE}_{i,m}} \) is the link between the \(\text{mBS}_i \) and the \(m \)-th mUE, \(\text{mUE}_{i,m} \), in the coverage of \(\text{mBS}_i \) and \(PL_{\text{D2DR}_{i,j,h}} \) is the link between the \(j \)-th D2DS and the \(h \)-th D2DR, \(\text{D2DR}_{i,j,h} \), in the \(j \)-th D2DS coverage of \(\text{mBS}_i \), as shown in (1) and (2). The path-loss is modeled according to the micro-urban models ITU-R report [10]. We apply different path-loss models to D2DRs and mUEs as given in Eqs. (1) and (2) [8]. The path-losses of the micro-urban models for D2DRs (\(PL_{\text{D2DR}_{i,j,h}} \)) and mUEs (\(PL_{\text{mUE}_{i,m}} \)) are expressed as

\[
P L_{\text{D2DR}_{i,j,h}} = 40 \log_{10} d[m] + 30 \log_{10} f_c[MHz] + 49
\]

(1)

\[
P L_{\text{mUE}_{i,m}} = 36.7 \log_{10} d[m] + 40.9 + 26 \log_{10} (f_c[GHz]/5)
\]

(2)

where \(d \) represents the distance between a sender and a receiver, and \(f_c \) represents carrier frequency of the system.

2.2. Physical Frame Structure and Signal to Interference and Noise Ratio (SINR) Model

The physical frame structure in our D2D network is orthogonal frequency division multiple access (OFDMA)-frequency division duplex (FDD). The length of each frame is 10ms and a frame consists of 10 sub-frames. Also, each sub-frame has two slots (a slot is 0.5ms) and each sub-channel per slot is the unit of resource block (RB) [11] but we name a sub-channel per
symbols RB is this paper. The numbers of sub-channels and symbols are S and Z, respectively.

The SINR model is defined as the ratio of a signal’s power to the interference power for the b-th RB in the a-th sub-channel, $R_{mBS_{a,b}}$. We assume that X mBSs are placed in a given area and Y D2DSs are deployed in each macrocell’s coverage. Also, L mUEs are serviced by each mBS and F D2DRs are serviced by each D2DS.

Under these assumptions, let $R_{mBS_{a,m}}$ and $R_{D2DS_{i,j,h}}^{RB_{a,b}}$ be the strengths of a received signal for the b-th RB (1 ≤ b ≤ Z) in the a-th sub-channel (1 ≤ a ≤ S) from the i-th mBS (1 ≤ i ≤ X) to the m-th mUE (1 ≤ m ≤ L) in the i-th macrocell coverage and from the j-th D2DR (1 ≤ j ≤ Y) to the h-th D2DR (1 ≤ h ≤ F) in the j-th D2DS coverage in the i-th macrocell coverage, respectively. The SINR of the mUE$_{l,m}$ for the RB$_{a,b}$, $Y_{mUE_{l,m}}^{RB_{a,b}}$, can be expressed as (3). N_0 is the white noise power. $I_{mBS_{x,m}}^{RB_{a,b}}$ and $I_{D2DS_{x,y,m}}^{RB_{a,b}}$ are the strengths of the interfering signal from the x-th mBS and from the y-th D2DS in the x-th macrocell coverage to the mUE$_{l,m}$ for the RB$_{a,b}$, $\omega_{x,m}$, and $\psi_{a,b}$, for which binary values are 1 or 0. If mBS$_x$ is in the group of interfering neighbor mBSs for the m-th mUE and the RB$_{a,b}$ is used by the neighbor mBSs or D2DSs, respectively, the SINR of the D2DR$_{i,j,h}$ for the RB$_{a,b}$, $Y_{D2DR_{i,j,h}}^{RB_{a,b}}$, can be expressed as (4).

\[
Y_{mUE_{l,m}}^{RB_{a,b}} = \frac{R_{mBS_{a,m}}^{RB_{a,b}}}{N_0 + \sum_{x=1}^{X} I_{mBS_{x,m}}^{RB_{a,b}} \cdot \omega_{x,m} \cdot \psi_{a,b} + \sum_{x=1}^{X} \sum_{y=1}^{Y} I_{D2DS_{x,y,m}}^{RB_{a,b}} \cdot \psi_{a,b}}
\]

\[
Y_{D2DR_{i,j,h}}^{RB_{a,b}} = \frac{R_{D2DS_{i,j,h}}^{RB_{a,b}}}{N_0 + \sum_{x=1}^{X} I_{mBS_{x,m}}^{RB_{a,b}} \cdot \psi_{a,b} + \sum_{x=1}^{X} \sum_{y=1}^{Y} I_{D2DS_{x,y,m}}^{RB_{a,b}} \cdot \psi_{a,b}}
\]

2.3. Proposed Resource Allocation Scheme

As shown in Figure 3, D2DSs allocate random RBs in the DL subframe (RB$_{inner}$ and RB$_{outer}$) for D2DRs in conventional D2DS networks with an FFR scheme. Thus, D2DSs cause substantial interference for mUEs in the outer zone while D2DRs in the inner zone are affected by substantial interference from the mBS.

In the proposed scheme, mBSs and D2DSs service mUEs and D2DRs using different RBs in RB$_{outer}$ to reduce strong interference of the outer zone, as shown in Figure 4. The mBS services mUEs in the inner zone by using RBs in RB$_{inner}$ whereas mUEs in the outer zone use RBs in RB$_{outer}$. However, D2DSs in the inner zone service their D2DRs by using RBs in RB$_{outer}$, except for the same sub-channel group for mUEs in the same site, because D2DRs in the inner zone are affected by substantial interference from the mBS. Also, D2DSs in the outer zone service their D2DRs using RBs in RB$_{inner}$ and RB$_{outer}$, because D2DRs are affected by slight interference from the mBS. In addition, mBSs and D2DSs’s powers are controlled. We increase the power of mBSs for mUEs in the outer zone, and increase the D2DS’s power for the D2D resource used in the outer zone.
We analyze the throughputs for \(mUE_{im} \) and \(D2DR_{i,j,h} \), \(T_{mUE_{im}} \) and \(T_{D2DR_{i,j,h}} \) by using the Shannon theorem as expressed in (5) and (6).

\[
T_{mUE_{im}} = \sum_{s=1}^{S} \sum_{z=1}^{Z} (RB_{s,z} \cdot \xi_{s,z}) \cdot \log_2 (1 + \gamma_{mUE_{im}}^{RB_{s,z}})
\] \hspace{1cm} (5)

\[
T_{D2DR_{i,j,h}} = \sum_{s=1}^{S} \sum_{z=1}^{Z} (RB_{s,z} \cdot \xi_{s,z}) \cdot \log_2 (1 + \gamma_{D2DR_{i,j,h}}^{RB_{s,z}})
\] \hspace{1cm} (6)

where \(\xi_{s,z} \) is a binary value and \(\xi_{s,z} = 1 \) else \(\xi_{s,z} = 0 \) if the \(RB_{s,z} \) is used by the \(mUE_{im} \) and \(D2DR_{i,j,h} \). The system throughputs for mBS and all D2DS, \(T_{mBS,i} \) and \(T_{D2DS,i} \), in the i-th macrocell are calculated by (7) and (8).
\[T_{mBS,i} = \sum_{l=1}^{L} T_{mUE,i,l} \]

(7)

\[T_{D2DS,i} = \sum_{y=1}^{V} \sum_{f=1}^{E} T_{D2DR,y,f,i} \]

(8)

We also analyze the outage probabilities, \(O_{mBS,i} \) and \(O_{D2DS,i} \), for mUEs and D2DRs in the i-th macrocell coverage, and those are calculated by (9).

\[O_{mBS,i} \approx \frac{N_{mUE,i}^{out}}{L}, O_{D2DS,i} \approx \frac{N_{D2DR,i}^{out}}{Y} \]

(9)

where \(N_{mUE,i}^{out} \) and \(N_{D2DR,i}^{out} \) are the numbers of SINR values less than -6dB, considering a bit error rate less than \(10^{-6} \) [12] for mUEs and D2DRs, respectively.

3. Performance Evaluation

We investigated the DL performance of proposed frequency planning and the power management scheme in terms of the system throughput and outage probability of mUEs and D2DRs for D2D networks using a Monte Carlo simulation. We performed 30,000 independent simulations and evaluated system performance according to the number of D2DSs in the analysis. The values of X, S, Z, Y, L, and F are 7, 5, 10, 10~200, 30, and 1, respectively. We assumed that the mBS and D2DSs allocated only one RB for each mUE and D2DR, respectively. The mBS were not allocated the same RBs to mUEs in the same cell, but D2DSs were allocated randomly an RB in given channel groups for each D2DR. Log-normal shadow fading was considered with a zero mean and standard deviations of 8dB for the link between the mBS and mUEs, and 9dB for the link between the D2DS and D2DRs, but multi-path fading was not considered. Table 1 gives the key parameters.

<table>
<thead>
<tr>
<th>Table 1. System Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Carrier Frequency</td>
</tr>
<tr>
<td>Bandwidth for DL</td>
</tr>
<tr>
<td>(D_{inter})</td>
</tr>
<tr>
<td>(D_{inner})</td>
</tr>
<tr>
<td>mBS Tx power ((P_{mBS}))</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D2DS Tx power ((P_{D2DS}))</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Noise power density ((N_0))</td>
</tr>
</tbody>
</table>

We compared the performance of the proposed scheme to the network without D2D links and a scheme which allocates radio resources randomly selected from the entire frequency band to D2D links with the FFR [6] systems.
Figure 5. System Throughput for mUEs

Figure 6. System Throughput for D2DRs

Figure 7. Outage Probability for mUEs

Figure 8. Outage Probability for D2DRs

Figure 5 describes the results of $T_{mBS,i}$, as the number of D2DRs increases. The traditional cellular system that was without D2DSs (Figure 5 broken line) always had the same performance. However, the results of the D2D networks (Figure 5 unbroken line) decreased with the number of D2DSs. The proposed scheme had better performance of $T_{mBS,i}$ than those of the RRA scheme. The results of the proposed scheme with 200 D2DSs were approximately increased by 13% compared to those of the RRA scheme.

Figure 6 describes the results of $T_{D2DS,i}$ that increased linearly, as the number of D2Ds increased. All $T_{D2DS,i}$ for the proposed scheme were higher than those of the RRA scheme. Figure 7 and Figure 8 describes the results of outage probability $O_{mBS,i}$ and $O_{D2DS,i}$ as the number of D2DSs increased. The results increased as the number of D2DSs increased, as did the increasing interference from the D2DSs. Also, the results of the proposed scheme were lower than those in the RRA scheme.
Figure 9–Figure 12 describes the cell center and edge results given 200 D2DRs with 30 mUEs. As shown in Figure 9, the system throughput of mUEs in a network without a D2D network is higher than the others because the mUEs are not interfered by D2DSs. In the network supporting D2D communication, system throughput of mUEs is degraded due to interference from D2D communication. Also, when the throughputs of the suggested RAPC scheme and RRA scheme are compared, it can be confirmed that the RAPC scheme generally has better performance than the RRA scheme. Figure 10 shows the system throughputs (T_{D2DS_i}) of the D2DRs. System throughput of D2DRs in the proposed schemes are higher than the random resource allocation scheme. Figure 11 and Figure 12 describes the results of O_{mBS_i} and O_{D2DS_i}, given 30 mUEs with 200 D2DRs. The results of the proposed RAPC scheme are lower than those of the RRA scheme.
4. Conclusion and Future Work

In this paper, we proposed a novel frequency planning and Tx power-management scheme to enhance the DL system performance for D2D networks. In the proposed scheme, the mBS and D2DSs service mUEs and D2DRs in the inner and outer zones with different frequency bands and Tx power, tended to reduce substantial interference. Simulation results showed the proposed scheme outperforms D2D networks with RRA schemes in terms of system throughput and outage probability for mUEs and D2DRs. Based on this study, we plan to conduct additional future research in the fields of frequency planning schemes and power management technology that have been improved in a sectored environment which considers a directional antenna.

Acknowledgments

This work was supported by the MKE [10035142], Development of an EMM Platform Technology Based on Energy Awareness for High-Efficient Building.

References

Authors

Tae-Sub Kim received his B.S. and M.S. degrees in computer and information science from the University of Korea in 2006 and 2009, respectively. He is currently working toward a Ph.D. degree in the Laboratory for Data Communication and Networks, Korea University. He has participated in various research projects involving an IMT-Advanced system, security techniques for smart car, U-Home, and BEMS systems. He is interested in wireless MAC protocols, wireless resource management, and design and analysis of the next generation wireless communication systems. In the area of wireless communication, he is currently focused on D2D technologies for the LTE-Advanced systems.

Kwang-Hyung Lee received his B.S. degree in industrial engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1978 and 1980. He received his M.S. and PH.D. degrees in computer science from the Institute National des Sciences Appliques, France, in 1981 and 1985, respectively. In 2000 he joined the Department of Bio and Brain Engineering, KAIST, Korea, where he is an professor.

Seungwan Ryu received his B.S. and M.S. degrees from Korea University, Seoul, Korea, in 1988 and 1991, respectively, and a Ph.D. from the University at Buffalo (SUNY at Buffalo), Buffalo, NY, USA, in 2003, all in Operations Research. From 1993 to 2004, he has been with Mobile Telecom. Research Lab., Electronics and Telecommunications Research Institute (ETRI), Teajon, Korea. In 2004 he joined the Department of Information Systems at Chung-Ang University, Ansung, Korea, where he is an associate professor. His research interests include design of wireless MAC protocols, wireless packet scheduling, modeling and control of the Internet traffic, and next generation wireless communication systems design and analysis.

Choong-Ho Cho received his B.S. and M.S. degrees in industrial engineering from Korea University in 1981 and 1983, respectively. He received his M.S. and PH.D. degrees in computer science from the Institute National des Sciences Appliques, Lyon, France, in 1986 and 1989, respectively. He was a postdoctoral fellow at INSA from 1989 to 1990. In 1994 he joined the Department of Computer and Information Science, Korea University, Korea, where he is an professor. His research interests include ubiquitous home networks, mobile/wireless networks, network traffic analysis, and the portable Internet.