Survey on Ethnopharmacology of Medicinal Plants in Iloilo, Philippines

Rey G. Tantiado

College of Arts and Sciences, West Visayas State University, La Paz, Iloilo City, Philippines
reygtantiado@yahoo.com

Abstract

This study aimed to (1) categorize the diversity of medicinal plants in Tigbauan, Iloilo, Philippines based on their taxonomic rank; (2) document the traditional uses, preparations and applications of medicinal plants (ethnopharmacology) by the local community; (3) determine the distribution, morphological forms, habitat and values of indigenous medicinal plant resources in Tigbauan, Iloilo; and lastly identify and enumerate the medicinal uses of each identified indigenous plants. Ethnopharmacological and taxonomic data of indigenous medicinal plants were collected in the study site through semi-structured interview and snowball sampling methods among knowledgeable elders, gardeners, healers, and traders. The taxonomic classification of the indigenous medicinal plants in Tigbauan, Iloilo was based on Cronquist’s System of classification. A total of 101 species, grouped within 92 genera, 44 families and 27 orders. The medicinal plants were described according to preparation techniques, mode of application, administration route, growth forms, habitat distribution, abundance and medicinal uses. Results showed a diversity of medicinal plants, traditional and ethnopharmacological knowledge about the uses, preparations and applications present and maintained among the Tigbaunenos. This study allowed the identification of many high value and high priority medicinal plant species, indicating high potential for economic development through sustainable collection and trade.

Keywords: Ethnopharmacology, medicinal plants, survey, Tigbauan

1. Introduction

1.1. Background of the Study

Medicinal plants have important contributions in the healthcare system of local communities as the main source of medicine for the majority of the rural populations. Plants do not have only nutritional value but have ritual or magical values [1]. They play a key role in the development and advancement of modern studies by servicing as a starting point for the development of novelties in drugs [11].

The ongoing recognition of medicinal plants is due to several reasons including escalating faith in herbal medicine. Allopathic medicine may cure a wide range of diseases; however its high prices and side effects are causing many people to return to herbal medicines which have fewer side effects [6]. Conversely, because information on the use of plant species for therapeutic purpose has been passed from one generation to the next through oral tradition,
this knowledge of therapeutic plants has started to decline and become obsolete through the lack of recognition by younger generations as a result of a shift in attitude and ongoing socio-economic changes [6, 5]. Furthermore, the indigenous knowledge on the use of lesser known medicinal plants is also rapidly declining [7]. Through the realization of the continuous erosion in the traditional knowledge of many valuable plants for medicine in the past and the renewal interest, currently, the need existed to review the valuable knowledge with the expectation of developing the medicinal plant sectors [7].

Traditional knowledge on biodiversity concerns the names, uses and management of plants and animals as perceived by the local or indigenous people in a given area. Folk names of plants and animals are the roots of traditional biodiversity knowledge [8]. Besides, folk systems of naming and classification of plants and animals are transmitted from generation to generation is constantly created by communities and groups in response to their environment.

1.2. Objectives:

a. To categorize the diversity of indigenous medicinal plants in Tigbauan, Iloilo based on their taxonomic rank.

b. To document the traditional uses, preparations and applications of medicinal plants (ethnopharmacology) by the local community.

c. To determine the distribution, morphological forms, habitat and values of indigenous medicinal plant (ethnobotany) resources in Tigbauan, Iloilo.

d. To identify and enumerate the medicinal uses of each identified indigenous plant species.

2. Methodology

2.1 The Study Area

The land area has a total 8,889 has. wherein 93.78% is devoted to agriculture and allied activities [16]. Of this area, 1,077 has. are planted with coconut while 4,554 has., with rice and 19 has. are devoted to fishpond. Around 60 has. are located to urban uses are residential, commercial, and institutional. The municipality has a flat terrain. The plain is approximately 57% of the total area, covering about 6,667 has. along the Northwest site of the Sibalom River. Along the boundaries of Guimbal, Leon and Tubungan are rolling hills covering an area, of about 1,518 has. This is shown in Figure 1. It has no forest covered. The highest point is 200 meters above sea level and lowest is one (1) meter above sea level. The town has two main rivers, Sibalom and Tacuyong River. Based on morphological studies, Tigbauan has four (4) types of soil namely; Sta Rita Clay, Lamingan fine sand loam, Alimodian clay loam, and Alimodian silt loam. With these types of soil and slope category, a total area of 1,077 has. is devoted to coconut while the rest of the rolling hills are planted with root crops, bamboos, corn and fruit trees such as mangoes, etc. It has two seasons, the wet and the dry: the first, starts early June and ends early November while the second, starts early of November and ends in the month of May. As influenced by these two seasons, the municipality has two basic industries- agriculture and fishing.
2.2 Sampling Method

The snowball sampling or chain referral sampling was used in the study. It is a nonprobability technique that is used by the researcher to identify potential subjects in studies where subjects are hard to locate [13]. Participants were purposively selected which include key informants, plant collectors or gardeners, traditional healers and traders.

2.3 Ethnobotanical Data Collection

Ethnopharmacological data were collected from August 20 to September 12 2010 through semi-structured interviews with selected knowledgeable elders, gardeners, healers, and traders, ages between 35 to 80 years old with 5 males and 8 females from the selected barangays based on a survey questionnaire. Interviews and discussions were conducted in dialect on site. For ethical purpose, the data were collected with the permission of the informants and knowledge of the local barangay officials especially the barangay captains.

2.4 Plant Classification Procedure

The common local and scientific names of plants and their taxonomic classification such as classes, orders and families were identified through species and genera based on the references by Buot, et al., (2006), Cronquist (1988), De Tavera (1901) Madulid (2000), Quisumbing (1978), Simpson (2005), Stuart (2000) and Watson and Dallwitz (1992). Sample specimen were collected for those species in which field identification was not certain and brought to West Visayas State University, La Paz, Iloilo City that can facilitate the proper identification using their reference collections.
2.5 Plant Identification

Voucher specimens were collected for the encountered plant species both in the wild and home gardens. Preliminary identification of the collected specimens were made in the site, then they were dried based on the standard procedures in herbarium specimen preparations [3]. Herbarium specimen was initially identified based on published reference collections and websites, compared with authentic herbarium specimens from WVSU and finally confirmed by a Botany and Taxonomy instructor.

2.6 Ethnobotanical Data Analysis

Descriptive statistical method using the percentage was employed to analyze and summarize the ethnobotanical data on the reported medicinal plants and associated knowledge.

3. Results

3.1 Taxonomy of Identified Medicinal Plants in Tigbauan, Iloilo

The taxonomic classification of the indigenous medicinal plants in Tigbauan, Iloilo based on the survey questionnaire of the local name of the plants was based on Cronquist’s System of classification. This was further based on the references of Buot, et al., (2006), Cronquist (1988) and Watson and Dallwitz (1992). The medicinal plants’ taxonomy is shown below.

Division Magnoliophyta
 Class Magnoliopsida
 I.Subclass Magnoliidae
 1.Order Magnoliales (Bromhead (1838)
 1.Family Annonaceae Juss. (1789)
 1.Annona muricata
 2.Annona reticulata
 3.Annona squamosa
 2.Order Piperales Dumort. (1829)
 2.Family Piperaceae
 1.Peperomia pellucida Linn.
 2.Piper betle
 II.Subclass Caryophylliidae
 3.Order Caryophyllales
 3.Family Basellaceae
 1.Basella rubra Linn.
 4.Family Nyctaginaceae
 1.Mirabilis jalapa Linn.
 5.Family Polygonaceae Juss. (1789)
 1.Antigonon leptopus
 6.Family Portulacaceae Juss. (1789)
 1.Portulaca oleracea Linn.
 4.Order Ranunculales Dumort. (1829)
 7.Family Menispermaceae Juss. (1789)
 1.Tinospora rumphi Boerl.
 5.Order Saxifragales Dumort (1829)
 8.Family Crassulaceae J. St.-hil. (1805)
1. Bryophyllum pinnatum

III. Subclass Rosidae

6. Order Brassicales Bromhead (1838)
 9. Family Caricaceae
 1. Carica papaya
 10. Family Moringaceae Martynov (1820)
 1. Moringa oleifera

7. Order Fabales Bromhead (1838)
 11. Family Fabaceae Lindl. (1836)
 1. Bauhinia malabarica
 2. Cassia alata Linn.
 3. Clitoria ternatea Linn.
 4. Erythrina variegata Linn.
 5. Gliricidia sepium
 6. Mimos a pudica Linn.
 7. Pachyrhizus erosus Linn.
 8. Pithecellobium dulce
 10. Samanea saman Merr.
 11. Sesbania grandiflora Linn.
 12. Tamarindus indica Linn.

8. Order Malpighiales Mart (1829)
 12. Family Euphorbiaceae Juss. (1789)
 1. Antidesma bunius Linn.
 2. Euphorbia hirta Linn.
 3. Macaranga tanarius
 4. Manihot esculenta Crantz.
 5. Phyllanthus urinaria
 6. Ricinus communis Linn.

9. Order Malvales Dumort. (1829)
 13. Family Bixaceae Kunth (1822)
 1. Bixa orellana

14. Family Malvaceae Juss. (1789)
 2. Abelmoschus esculentus Linn.
 3. Corchorus olitorius L.
 4. Hibiscus rosa-sinensis L.
 5. Hibiscus sabdariffa Linn.
 6. Sida rhombifolia Linn.
 7. Theobroma cacao Linn.

10. Order Myrtales Rchb. (1828)
 15. Family Combretaceae R. Br. (1810)
 1. Quisqualis indica
 2. Terminalia catappa

16. Family Myrtaceae Juss (1789)
 1. Syzygium cuminii
 2. Psidium guajava

11. Order Oxalidales Heintze (1927)
 17. Family Oxalidaceae R. Br. (1818)
 1. Averrhoa bilimbi
2. Averrhoa carambola Linn.
3. Oxalis repens Thub.

12. Order Rosales Perleb (1826)
18. Family Moraceae Link (1831)
 1. Artocarpus altilis
 2. Artocarpus heterophyllus Lam.
 3. Ficus elastica
19. Family Anacardiaceae R. Br. (1818)
 1. Spondias pinnata (Linn. f.) Kurz
 2. Spondias purpurea Blanco

13. Order Sapindales Dumort. (1829)
20. Family Meliaceae Juss. (1789)
 1. Azadirachta indica A. Juss.
 2. Sandoricum koetjape Merr.
21. Family Rutaceae Juss. (1789)
 1. Citrus hystrix
 2. Citrus microcarpa
 3. Triphasia trifolia P. Wils.
22. Family Sapindaceae Juss. (1789)
 1. Cardiospermum halicacabum

IV. Subclass Asteridae

14. Order Apiales Nakai (1930)
23. Family Apiaceae Lindl (1836)
 1. Centella asiatica
24. Family Araliaceae Juss. (1789)
 1. Nothopanax scutellaria (Burm. f.) Merr.
15. Order Asterales Lindl (1833)
25. Family Asteraeae Martynov (1820)
 1. Wedelia biflora Linn.
 2. Blumea balsamifera (Linn.) D. C.
15. Order Ericales Dumort. (1829)
26. Family Balsaminaceae Bercht and J. Prel (1820)
 1. Impatiens balsamina Linn.
27. Family Ebenaceae Gurke (1891)
 1. Diospyros blancoi
28. Family Sapotaceae Juss. (1789)
 1. Acharas sapota Linn.
 2. Chrysophyllum cainito Linn.
 3. Pouteria campechiana (HBK.) Baehni
17. Order Gentianales Lindl. (1833)
29. Family Apocynaceae Juss. (1789)
 1. Catharanthus roseus Linn.
 2. Nerium indicum Mill.
 3. Plumeria rubra
 4. Tabernaemontana pandacaqui
30. Family Rubiaceae Juss. (1789)
 1. Gardenia jasminoides
 2. Morinda citrifolia
4. Nauclea orientalis

18. Order Lamiales Bromhead (1838)
31. Family Lamiaceae Martynov (1820)
1. Coleus aromaticus Benth.
2. Coleus scutellarioides
3. Mentha arvensis Linn.
4. Pogostemon cablin Blanco.

32. Family Oleaceae Hoffmanns. and Link (1809)
1. Jasminum sambac Linn.

33. Family Verbenaceae J. St.-Hil. (1805)
1. Duranta repens Linn.
2. Lantana camara
3. Premna odorata Blanco
4. Vitex negundo Linn.

34. Family Boraginaceae Juss. (1789)
1. Cordia obliqua Willd.
2. Ehretia microphylla Lam.

19. Order Solanales Dumort (1829)
35. Family Convolvulaceae Juss. (1789)
1. Ipomoea aquatica Forsk.
2. Ipomoea batatas Linn.

36. Family Solanaceae Juss. (1789)
1. Capsicum frutescens

Class Liliopsida (Monocots)
I. Subclass Liliidae

20. Order Alismatales Dumort. (1829)
37. Family Araceae Juss. (1789)
1. Colocasia esculenta Linn.
2. Pistia stratiotes

21. Order Asparagales Bromhead (1838)
38. Iridaceae Juss. (1789)
1. Jatropha curcas

22. Order Liliales Perleb (1826)
39. Family Liliaceae Juss. (1789)
1. Aloe barbadensis Mill.

23. Order Pandanales Lindl. (1833)
40. Family Pandanaceae
1. Pandanus tectorius

24. Order Poales Small (1903)
41. Family Poaceae (R. Br.) Barnh. (1895)
1. Andropogon citratus D.C.
2. Saccharum spontaneum
3. Saccharum officinarum Linn.

25. Order Zingiberales Griseb. (1854)
42. Family Musaceae Juss. (1789)
1. Musa sapientum Linn.

II. Subclass Commeliniiidae

26. Order Arecales Bromhead (1840)
43. Family Arecaceae Schutz. Sch. (1832)
 1. Areca catechu
 2. Cocos nucifera
 3. Corypha elata

27. Order Commelinales Dumort (1829)
44. Family Commelinaceae Mirb. (1804)
 1. Rhoeo discolor

3.2 Summary of the Taxa Recorded

The informants reported 101 plant species that they know which were used for medicinal purposes. The total number of taxa was summarized into orders, families, genera and species of medicinal plants in Tigbauan, Iloilo. This is shown in Table 1.

Table 1. Total Number of Taxa Recorded

<table>
<thead>
<tr>
<th>Number of species</th>
<th>101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genera</td>
<td>92</td>
</tr>
<tr>
<td>Families</td>
<td>44</td>
</tr>
<tr>
<td>Orders</td>
<td>27</td>
</tr>
</tbody>
</table>

3.3 Plant Parts Used for Medicine

Based on the survey result on medicinal plant parts used for medicinal purposes, the leaves are the most commonly utilized part of the plant while the seeds are rarely used to treat various ailments. This is shown in Figure 2.

![Plant Parts Used for Medicinal Purposes](image)

Figure 2. Plant Parts Used for Medicinal Purposes

3.4 Preparation, Application and Administration Route of Medicinal Plants

Plant parts used are prepared as medicine using fresh plant parts, dried plant material or both. The common forms of preparation methods for remedies made from medicinal plants are paste wherein fresh plant parts are crushed with a mortar and pestle, decoction where plant parts are boiled in water and the extract (crude drug) is used, chewing where fresh plant parts are chewed and infusion where plant parts are plunged in water for a few minutes. Paste (44%) is the most common form of preparation technique used by the people while infusion (1%) is rarely used. This is further shown in Figure 3.
For the method of application, external application (57.01%) is more frequently employed than the internal application (42.98%) as shown in Figure 4. In external application, rubbing or ointment (57%) is the most frequently used while chew and spit the residue (3%) is the least frequently used. This is shown in Figure 6. In internal application, drinking is the most commonly used way of taking the medicine (67%) while chewing and swallowing the juice (6%) is the least common way of taking the medicine. This is shown in Figure 5. Since external application is more common than internal one, cutaneous route administration has the highest percentage (55.26%) while nasal route is not used at all. This is shown in Figure 7.
3.5 Diversity in Growth Forms of Medicinal Plants

In the analysis of growth forms, it shows that of the total medicinal plants (n=101), trees (46.53%) has the highest type of frequently used medicinal plants while shrubs (15.85%) is the lowest type of frequently used medicinal plants in terms of growth forms. This is also known as the plant habit. Furthermore, it is shown in Figure 8. The vines are classified and incorporated with the herbs for practical purposes.
3.6 Habitat and Distribution of Medicinal Plants in the Site

The plants habitat are classified depending where their availability can be located or commonly exist and grow in home gardens which encompasses the area surrounded by the owner’s fence both back and front yards or in the wild, beyond the owners residential lot. The results show that medicinal plants are more commonly found in wild habitats (53.09%) rather than in home gardens (46.9%). This is shown in Figure 9.

![Figure 9. Percentage Distribution on the Habitat of Medicinal Plants](image)

The wild habitat is further subdivided into seven locations which may be far or near the local people’s residence or covers certain distances away from the folk’s population. This may be considered also as remote or isolated area. The forest (44%) is the most common site of the medicinal plants which allow their usual and natural growth of plants as undisturbed by the people and can affect their abundance. The area closed to streams and rivers (3%) such as river banks and dikes is the least frequent location of the plants. This is shown in Figure 10. Thus, location and the condition of the environment may affect the growth and distribution of the medicinal plants.

![Figure 10. Percentage Distribution of Medicinal Plants in the Wild Habitat](image)
3.7 Abundance of Medicinal Plants

Based on the informants’ knowledge about the abundance and scarcity of the medicinal plants in the area, they were described into three categories, commonly, occasionally and rarely encountered not only by them but with other locals also. Majority of the medicinal plants were commonly encountered (56%, n=57), occasionally encountered (34%, n=34) and rarely encountered (10%, n=10) in the study site. This is shown in Figure 11. The quantity of the medicinal plants was reported to have been decreasing from time to time. This may be brought about by both anthropogenic (human-related activities) and non-anthropogenic (physical and chemical conditions of the environment) factors. The commonly encountered plants (56%) are the herbs and shrubs that indigenously found near or within the lot of the local residences such as home gardens, fallow lands, grazing lands, grassland and roadside. The rarely encountered plants (10%) can be found in the forest or nearby river or streams consist of shrubs and trees.

![Degree of Abundance of Medicinal Plants](image)

Figure 11. Degree of Abundance of Medicinal Plants

The medicinal plants were further listed and identified according to their degree of abundance. This is shown in Table 4.

<table>
<thead>
<tr>
<th>Degree of Abundance</th>
<th>List of Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rarely Encountered</td>
<td>Spondias pinnata, Nothopanax scutellaria, Areca catechu, Cordia obliqua, Quiqualis indica, Macaranga tanarius, Pachyrhizus erosus, Sesbania grandiflora, Pogostemon cablin, Premna odorata</td>
</tr>
<tr>
<td>Occasionally Encountered</td>
<td>Spondias purpurea, Annona reticulata, Pistia stratiotes, Corypha elata, Wedelia biflora, Rhoeo discolor, Diopyrus blancoi, Ricinus communis, Bauhinia malabarica, Cassia alata, Erythrina variegata, Coleus aromaticus, Coleus scutellarioides, Mentha arvensis, Hibiscus sabdariffa, Theobroma cacao, Artocarpus altilis, Ficus elastica, Syzygium cumini, Mirabilis jalapa, Averrhoa carambola, Oxalis repens, Pandanus tectorius, Piper betle, Gardenia jasminoides,</td>
</tr>
</tbody>
</table>

Table 4. List of Plants According to the Degree of Abundance
3.8 Medicinal Plants Used to Treat a Particular and Several Ailments

The degree of informants’ knowledge on each medicinal plant and the popularity of some medicinal plants in treating specific health problems were identified in general, based on the organ system that they most likely applied and the general ailment that inflicts the human body as a whole. This is shown in Table 5. The idea on the medicinal properties of identified plants in the area were also confirmed and consulted on local medicinal plant references such as by De Tavera (1901), Quisumbing (1978) and Stuart (2000).

<table>
<thead>
<tr>
<th>Table 5. Medicinal Plants Used to Cure Various Ailments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastro-intestinal Disorders</td>
</tr>
<tr>
<td>Pandanus tectorius, Carica papaya, Ipomoea aquatica,</td>
</tr>
<tr>
<td>Saccharum spontaneum, Duranta repens, Andropogon citrates,</td>
</tr>
<tr>
<td>Spondias purpurea, Macaranga tanarius, Artocarpus altillis,</td>
</tr>
<tr>
<td>Achras sapota, Gardenia jasminoides, Ehretia microphylla,</td>
</tr>
<tr>
<td>Artocarpus heterophyllus, Morinda citrifolia, Abelmoschus</td>
</tr>
<tr>
<td>esculentus, Pithecellobium dulce, Antigonon leptopus, Oxalis</td>
</tr>
<tr>
<td>repens, Mentha arvensis</td>
</tr>
<tr>
<td>Fever and Headache</td>
</tr>
<tr>
<td>Jasminum sambac, Terminalia catappa, Sesbania grandiflora,</td>
</tr>
<tr>
<td>Cordia obliqua, Theobroma cacao, Sida rhombifolia, Corchorus</td>
</tr>
<tr>
<td>oltorius, Sandoricum koetjape, Diospyrus blancoi, Nothopanax</td>
</tr>
<tr>
<td>scutellaria, Piper betle, Wedelia biflora, Nerium indicum,</td>
</tr>
</tbody>
</table>
4. Discussion

The number of medicinal plants (n=101 species) and their uses in the community demonstrates the depth of the local knowledge on indigenous medicinal plants and their applications. In general, various studies have shown that different areas in different parts of the world demonstrated the existence of considerable amount of indigenous ethnopharmacological knowledge. Traditional healers believe in a form of sanctity of the curative power of medicinal plants. The district of Tigbauan, Iloilo showed a reliance on medicinal plants for health care that may be associated with poverty, lack of accessibility to nearby hospitals and modern facilities and the traditional beliefs about plant effectiveness.
There is a diversity of medicinal plants and traditional knowledge about the use, preparation and application which is still maintained among the Tigbauenos. The preservation of this knowledge appears to be the result of the continued reliance of the local communities on the medicinal plants. Utilization of more trees than herbs and shrubs for medicinal purpose may hint at the fact that the pressure due to harvesting medicines is significant on plant diversity in the area. Using more leaves than other plant parts imply that traditional medical culture in the area does not threaten biological diversity.

5. Conclusions and Recommendations

There are about 101 species of medicinal plants surveyed in Tigbauan, Iloilo, Philippines grouped into 92 genera, 44 families and 27 orders based on Cronquist system of classification. It has been documented that these plant used with medicinal values are prepared using fresh plant parts, dried plant material or both and preparation methods for remedies are paste, decoction, chewing and infusion. They are either applied internally or externally depending on the plant species. The growth forms of these plants are trees, shrubs and herbs and distributed at home gardens and in wild habitats. The distributions of these plants are described being commonly encountered, rarely encountered and occasionally encountered. Furthermore, these plants are used to treat various diseases or ailments such as gastro-intestinal disorders, fever and headache, cuts and wounds, cough and cold, musculoskeletal disorders, dermatological diseases, ophthalmological problems toothache and kidney problems.

It is recommended for a detailed phytochemical screening of indigenously used medicinal plants in Tigbauan, Iloilo. It can also be consulted on the listed screened plants in the Philippine Pharmacopoeia. Proper and community based-management of indigenous medicinal plants to ensure their long term availability for indigenous medicinal and commercial uses is a must. Public awareness is needed to be encouraged at all levels to maintain the biodiversity and the ethnomedicinal knowledge of the Tigbauenos. Creation of database of medicinal plants in the study site that could become part of the database of the medicinal plants in the Philippines is also advised. Other means of sampling can be done to further recognize and discover unidentified medicinal plants in the area. Conduct research on the propagation and cultivation methods of indigenous medicinal plants for human and livestock diseases.

Acknowledgements

The researcher would like to thank the barangay officials of Tigbauan, Iloilo, Philippines for the permit in conducting an interview in the different barrios and household members of the interviewee for obtaining some collection of plant samples and lastly, to Dr. Inocencio Buot Jr. for the approval of the study.

References

Author

Rey G. Tantiado

Graduate of BS Biological Sciences and Master of Arts in Biology at West Visayas State University, Iloilo City Philippines on March 2003 and March 2006 respectively. Currently he is pursuing his Doctor of Philosophy in Education (Biology) from the University of the Philippines Open University, Los Banos, Laguna Philippines. He is currently affiliated West Visayas State University handling Biology subjects.