Novel Fuzzy logic Based Edge Detection Technique

Aborisade, D.O
Department of Electronics Engineering,
Ladoke Akintola University of Tech., Ogbomoso, Oyo-state.
doaborisade@yahoo.com

Abstract

This paper is based on the development of a fuzzy logic based edge detection technique in digital images. The proposed technique used three linear spatial filters to generate three edge strength values at each pixel of a digital image through spatial convolution process. These edge strength values are utilized as fuzzy system inputs. Decision on whether pixels in focus belong to an edge or non-edge is made in the proposed technique based on the Gaussian membership functions and fuzzy rules. Mamdani defuzzifier method is employed to produce the final output pixel classification of a given image. Experimental results show the ability and high performance of proposed algorithm compared with Sobel and Kirsch operators.

Keywords: Fuzzy Logic, Fuzzy inference system, Edge strength, Edge detection.

1. Introduction

An Edge is defined as discontinuities in pixel intensity within an image. The edges of an image are always the important characteristics that offer an indication for higher frequency. Detection of edges in an image is used as a preprocessing step to extract some low-level boundary features, which are then fed into further processing steps, such as object finding and recognition.

Many edge-detection methods have been suggested in the past years for the purpose of image analysis and had been attempted by many researchers to support different optimization goals. Traditional techniques, such as Sobel, Prewitt and Roberts provide false edge detection and being very sensitive to noise.

Canny [1] proposed a method to counter noise problems and minimize the probability of false edges. In his work image is convolved with the first order derivatives of Gaussian filter for smoothing in the local gradient direction followed by edge detection by thresholding [2]. Canny edge detector has major drawbacks of being computational complexity and do not give a satisfactory results in varying contrast areas. However, improvement in the edge-detection research area has now resulted in the use of some tools such as neural networks, ant colony and, fuzzy logic by some presented algorithms [2].

In this paper, fuzzy logic based approach to edge detection in digital images is proposed. Firstly, for each pixel in the input image ‘edginess’ measure is calculated using three 3×3 linear filters after which three fuzzy sets characterized by three (3) Gaussian membership functions associated to linguistic variable “Low”, “Medium” and “High” were created to represent each of the edge strengths. The second phase involves application of fuzzy inference rule to the three fuzzy sets to modify the membership values in such a way that the fuzzy system output (“edge”) is high only for those pixels belonging to edges in the input image. Final pixel classification as edge or non-edge using Mamdani defuzzification method is the last step.
2. Fuzzy Logic Based Application

Fuzzy logic represents a powerful approach to decision making [3], [4], [5]. Since the concept of fuzzy logic was formulated in 1965 by Zadeh, many researches have been carried out on its application in the various areas of digital image processing such as image quality assessment, edge detection, image segmentation, etc.

Many techniques have been suggested by researchers in the past for fuzzy logic-based edge detection [6], [7], [8]. In [9], Zhao, et al. proposed an edge detection technique based on probability partition of the image into 3-fuzzy partitions (regions) and the principle of maximum entropy for finding the parameters value that result in the best compact edge representation of images. In their proposed technique the necessary condition for the entropy function to reach its maximum is derived. Based on this condition an effective algorithm for three-level thresholding is obtained.

Several approaches on fuzzy logic based edge detection have been reported based on fuzzy If-Then rules [10], [11]. In most of these methods, adjacent points of pixels are assumed in some classes and then fuzzy system inference are implemented using appropriate membership function, defined for each class [12]. In Liang, et al. [13], adjacent points are assumed as 3×3 sets around the concerned point. By predefining membership function to detect edges. In these rules discontinuity in the color of different 3×3 sets, edges are extracted. It uses 5 fuzzy rules and predefined membership function to detect edges. In these rules discontinuity of adjacent point around the concerned point are investigated. If this difference is similar to one of predefined sets, the pixel is assumed as edge.

A similar work is proposed by Mansoori, et al. [14], wherein adjacent points of each pixel are grouped in six different set. Then by using of appropriate bell shape membership function, the value from zero to one is determined for each group. Based on the membership values, and fuzzy rules, decision about existing/not existing and direction of edge pixels are obtained.

3. Proposed Algorithm

In this paper, at first an input image is pre-process to accentuate or remove a band of spatial frequencies and to locate in an image where there is a sudden variation in the grey level of pixels. For each pixel in the image edge strength value is calculated with three (3) 3×3 linear spatial filters i.e. low-pass, high-pass and edge enhancement filters (Sobel) through spatial convolution process. In carrying out a 3×3 kernel convolution, nine convolution coefficients called the convolution mask are defined and labeled as seen below:

\[
\begin{array}{ccc}
 a & b & c \\
 d & e & f \\
 g & h & i \\
\end{array}
\]

Every pixel in the input image is evaluated with its eight neighbors, using each of the three masks shown in Figure 1 to produce edge strength value. The equation used for the calculation of edginess values between the center pixel and the neighborhood pixels of the three (3) masks using spatial convolution process is given by:
\[O(x, y) = aI(x - 1, y - 1) + bI(x - 1, y) + cI(x - 1, y + 1) \\
+ dI(x, y - 1) + eI(x, y) + fI(x, y + 1) \\
+ gI(x + 1, y - 1) + hI(x + 1, y) + iI(x + 1, y + 1) \quad (1) \]

However, the result of convolution of the two Sobel kernels is combine thus, the approximate absolute gradient magnitude (edge strength) at each point is computed as:

\[O_g = |O_x| + |O_y| \quad (2) \]

The normalized edge strength is then defined as:

\[NO(x, y) = \text{round}[(O(x, y) / \max(O)) \times 100] \quad (3) \]

where \(x = \{0, 1, \ldots, M - 1\} \) and \(y = \{0, 1, \ldots, N - 1\} \) for an M-by-N image.

\[
\begin{bmatrix}
\frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\end{bmatrix}
, \quad
\begin{bmatrix}
-1 & -1 & -1 \\
-1 & 9 & -1 \\
-1 & -1 & -1 \\
\end{bmatrix}
, \quad
\begin{bmatrix}
-1 & 0 & +1 \\
-2 & 0 & +2 \\
-1 & 0 & +1 \\
\end{bmatrix}
, \quad
\begin{bmatrix}
+1 & +2 & +1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{bmatrix}
\]

![Figure 1. 3 x 3 Kernels Used for Edge Detection](image)

The edge strength values derived from the three (3) masks served as the inputs used in the construction of the fuzzy inference system based on which decision on pixel as belonging to an edge or not are made. Membership functions are defined for fuzzy system inputs. Many membership functions have been introduced in the literature. In the proposed edge detection Gaussian membership functions are used. To apply these functions, each of the edge strength values of \(O_g, O_{H_p}, \) and \(O_{L_p} \) are mapped into fuzzy domain between 0 and 1, relative to the normalized gray levels between 0 and 100, using Gaussian membership functions given as

\[\mu_{mn} = G(x_{mn}) = e^{-(x_{mn} - x_{mn}^\text{max})^2/2\sigma^2} \quad (4) \]

where \(G(x_{mn}) \) is a Gaussian function, \(x_{\text{max}}, x_{mn} \) are the maximum and \((m,n)th\) gray values respectively and \(\sigma \) is the standard deviation associated with the input variable. Each of the mapped values are partition into three fuzzy regions “Low”, “Medium”, and “High”. The defined regions and membership functions are shown in Fig. 2.
Fuzzy inference rules are applied to assign the three fuzzy sets characterized by membership functions \(\mu_{\text{Low}}, \mu_{\text{Medium}}, \) and \(\mu_{\text{High}} \) to the output set. The rules, tabulated in Table 1 are defined in such a way that in the fuzzy inference system, output set \(E_L, E_M, \) and \(E_H \) correspond to pixels with low, medium and high probability value respectively. The output of the system \(P_{\text{Final}} \) representing the probability used for final pixel classification as edge or non-edge was computed using a singleton fuzzifier, Mamdani defuzzifier method given by:

\[
P_{\text{Final}} = \frac{\sum_{i=1}^{M} \overline{y}^f (\prod_{i=1}^{n} \mu_{k_i}(\alpha_i))}{\sum_{i=1}^{M} (\prod_{i=1}^{n} \mu_{k_i}(\alpha_i))}
\]

where \(\alpha_i \) are the fuzzy sets associated with the antecedent part of the fuzzy rule base, \(\overline{y}^f \) is the output class center and \(M \) is the number of fuzzy rules being considered.

4. Experimental Results

The proposed fuzzy edge detection method was simulated using MATLAB on different images, its performance are compared to that of the Sobel and Kirsch operators. Samples for a set of four test images are shown in Fig. 3(a). The edge detection based on Sobel and Kirsch operators using the image processing toolbox in MATLAB with threshold automatically estimated from image’s binary value is illustrated in Fig. 3(b) and 3(c). The sample output of the proposed fuzzy technique is shown in Fig. 3(d). The resulting images generated by the fuzzy method seem to be much smoother with less noise and has an exhaustive set of fuzzy conditions which helps to provide an efficient edge representation for images with a very high efficiency than the conventional gradient-based methods (Sobel and Kirsch methods).

5. Conclusion

Effective fuzzy logic based edge detection has been presented in this paper. This technique uses the edge strength information derived using three (3) masks to avoid detection of spurious edges corresponding to noise, which is often the case with conventional gradient-
based techniques. The three edge strength values used as fuzzy system inputs were fuzzified using Gaussian membership functions. Fuzzy if-then rules are applied to modify the membership to one of low, medium, or high classes. Finally, Mamdani defuzzifier method is applied to produce the final edge image.

Through the simulation results, it is shown that the proposed technique is far less computationally expensive; its application on digital image improves the quality of edges as much as possible compared to the Sobel and Kirsch methods.

This algorithm is suitable for applications in various areas of digital image processing such as face recognition, fingerprint identification, remote sensing and medical imaging where boundaries of specific regions need to be determined for further image analysis.

Acknowledgement

The author is grateful to Engineer I. A Isaiah at Ladoke Akintola University of Technology, Ogbomoso, Nigeria for his helpful advice.

Table 1. Fuzzy Inference Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Fuzzy Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (edginess_{tp}) is LO and (edginess_{so}) is LO and (edginess_{hp}) is LO then (p_{edge}) is (E_L)</td>
<td></td>
</tr>
<tr>
<td>If (edginess_{tp}) is LO and (edginess_{so}) is LO and (edginess_{hp}) is MD then (p_{edge}) is (E_L)</td>
<td></td>
</tr>
<tr>
<td>If (edginess_{tp}) is LO and (edginess_{so}) is LO and (edginess_{hp}) is HI then (p_{edge}) is (E_L)</td>
<td></td>
</tr>
<tr>
<td>If (edginess_{tp}) is LO and (edginess_{so}) is HI and (edginess_{hp}) is LO then (p_{edge}) is (E_L)</td>
<td></td>
</tr>
<tr>
<td>If (edginess_{tp}) is HI and (edginess_{so}) is HI and (edginess_{hp}) is HI then (p_{edge}) is (E_H)</td>
<td></td>
</tr>
<tr>
<td>If (edginess_{tp}) is MD and (edginess_{so}) is MD and (edginess_{hp}) is LO then (p_{edge}) is (E_L)</td>
<td></td>
</tr>
<tr>
<td>If (edginess_{tp}) is MD and (edginess_{so}) is HI and (edginess_{hp}) is LO then (p_{edge}) is (E_L)</td>
<td></td>
</tr>
</tbody>
</table>

...
Figure 3. (a) Original Images, (b) Sobel Operator Results, (c) Kirsch Operator Results, (d) Proposed Fuzzy Edge Detection Algorithm Results
References

Authors

Aborisade, David O. received the B. Eng. degree in Electronic and Electrical Engineering Technology from Federal University of Technology, Owerri, in 1989. He received M.Eng. and Ph.D. degrees in Electrical Engineering from University of Ilorin, in 1995 and 2006, respectively. He is currently a Senior Lecturer with the Department Electronic and Electrical Engineering, Ladoke Akintola University of Technology, Ogbomoso. His research interests include computer vision, pattern recognition, image and signal processing, neural networks, and fuzzy logic.