
International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

19 

Suspicious Malicious Web Site Detection with Strength Analysis of a 

JavaScript Obfuscation 
 

 

Byung-Ik Kim, Chae-Tae Im, Hyun-Chul Jung 
Korea Internet & Security Agency 

kbi1983@kisa.or.kr, chtim@kisa.or.kr, hcjung@kisa.or.kr 

Abstract 

The cyber attacks using web sites for a personal information sale or break down the 

infrastructures are increasing. To prevent cyber attacks, virtual computer systems are hired 

and dynamic malicious web site analysis systems are used. However the dynamic analysis 

systems have to setting up a targeted environment and have a threat of real attack. Unlikely 

the dynamic analysis system, a static malicious web site analysis system can download a web 

page source and analysis the web page. The static analysis algorism also has problem, the 

analysis time is longer than dynamic systems and need a human checking. For this reason, 

this journal suggest new analysis system reducing the dynamic and static system's problems 

using suspicious malicious web site detection with strength analysis of a JavaScript 

obfuscation for new hybrid analysis system. 

 

Keywords: Malicious Web Sites, Obfuscation JavaScript, Entropy, Frequency, Density 

 

1. Preface 

Recently, personal information leaks on the Internet and the attacks against social 

infrastructure are on the rise. Generally, the attacker inserts an attack code into the web 

site using the Internet, or causes a download of the attacking program to the user’s 

computer. These attacks can be made conveniently using JavaScript on a web site. In 

addition, the JavaScript obfuscation technique is used to hide JavaScript containing the 

attack code. Various methods are used to prevent attack made through Internet websites.  

There is a dynamic analysis system that detects malicious behavior of the web site by 

directly visiting the site in question and analyzing the result. As the dynamic analysis 

system visits the web site and analyzes the result, it is vulnerable to an attack. It takes 

longer than an hour to visit and analyze the site, and the system environment should be 

created that can make an attack. There is another system type – static analysis system 

that downloads and analyzes the source of the web site. This system has less 

vulnerability against the attack, as the attack is not directly made. However, the 

shortcomings are that the person should analyze the source code manually, and analysis 

takes a longer amount of time. Therefore, this paper proposes the JavaScript 

obfuscation strength examination system that will be included in the hybrid type 

analysis system, which will be developed to solve these shortcomings.  

This paper is composed as follows. Chapter 2 describes JavaScript obfuscation. 

Chapter 3 introduces existing malicious web site analysis methods. Chapter 4 proposes 

the JavaScript obfuscation strength examination system, and presents the result in 

comparison with existing systems. Chapter 5 describes a conclusion and further studies. 

 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

20 

2. JavaScript Obfuscation 

Java is a computer language that was first developed by Sun Microsystems in 1995 

and became popular and used widely since then. Java can run on almost every platform 

in the Internet distributed environment. Therefore, Java can be useful for web 

programming. Also, developers can use a program written in Java anywhere on the 

network. In addition, Java has the strength of creating and using a module or applet 

conveniently as a part of a web page. Therefore, special work is performed to protect 

the output of Java, which is used frequently and widely. It is called “obfuscation”, 

which makes the people not to understand the program code when they look at it. 

Developers can protect the program or ensure security when transmitting the program 

via communication, using JavaScript obfuscation methods. [1, 2] JavaScript obfuscation 

methods include variable name obfuscation and code content obfuscation. 

 

2.1. JavaScript obfuscation methods 

JavaScript obfuscation methods can be broadly grouped into 4 types: [3] the method 

of using ASCII values and Unicode values; using XOR operation; splitting a string; 

compressing a string and replacing the existing string with the meaningless string. 

Obfuscated JavaScript codes have no meaning in strings. Instead, codes are expressed 

as a disorderly set of numbers, alphabets, and special characters. These characters are 

used throughout JavaScript disorderly, and it takes a significantly long time for the 

understanding of these characters. 

These characteristics of the obfuscation method are used to check the obfuscated 

JavaScript in Chapter 4. One of the major characteristics in obfuscated JavaScript is 

that string length increases significantly, compared with the normal string, as other 

characters are inserted or meaningless characters are listed to hide the meaning of the 

string. Therefore, the length of the string can be the criteria of checking obfuscated 

JavaScript. In addition, special functions are used to display meaningless strings on the 

web browser. Therefore, the use frequency of these functions can be compared with the 

one in normal JavaScript. Also, if meaningless strings are created, or strings are 

expressed in another format such as ASCII values or Unicode values, the particular 

character may be used frequently. Therefore, obfuscation can be confirmed by checking 

the use frequency of these characters and entropy [8]. As a result, these characteristics 

are used as the criteria of checking obfuscated JavaScript in Chapter 4. 

 

  

Figure 1. Obfuscation using ASCII               Figure 2. Obfuscation using 
values                                   ASCII values and Unicode values 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

21 

2.1.1. Methods of using ASCII values and Unicode values : This method obfuscates 

JavaScript by replacing the part in JavaScript codes to protect with ASCII values or 

Unicode values. As shown in Figure 1, changed characters are encoded into 

corresponding ASCII values or Unicode values, and it takes long to understand the 

meaning without decoding. These obfuscated strings can be converted to the original 

string when displayed on the web browser, using several functions such as eval, 

unescap, and document.write. Therefore, these functions appear more frequently in 

obfuscated JavaScript than the normal JavaScript code. 

2.1.2 Method of using an XOR operation : The obfuscation method using an XOR 

operation runs in such way that the key value for an XOR operation is set first, and 

XOR operation is performed on strings in question with the key value. This method 

requires declaration of the key value – the core of the operation, and modified strings 

are displayed in a set of meaningless alphabets and special symbols. As shown in 

Figure 3, obfuscated strings cannot be understood with our naked eyes. In addition, if 

the key value that was used for the XOR operation is lost, it takes too much time to 

normalize it. Therefore, run the XOR operation again with the value set before opening 

the browser, before normalizing obfuscated strings. 

 

 

 

 

 

 
Figure 3, 4. Obfuscation using an XOR operation 

2.1.3. Method of splitting a string : Instead of listing up a string, this method split a 

string into several small strings to reduce readability and mixes the order of those small 

strings. As shown in Figure 5, obfuscation by splitting a string doesn’t change the 

meaning of an entire string but makes it difficult to understand. Before displayed on the 

browser, split strings are normalized using a + operation with the proper order, using 

the eval function. Or, as shown in Figure 5, a + operation is performed on strings split 

for obfuscation according to the order, and the results are put into the eval function to 

display the normal string. 

2.1.4. Method of compressing a string and replacing with a meaningless string : 

This method changes words or characters included in a string, in order to make it looks 

like a meaningless string. Strings are changed by special characters and meaningless 

strings. This method is similar to the method of using an XOR operation as described in 

2.1.2. Each character or string is mapped to another character or string, so that the 

string cannot be understood. Obfuscated strings are mainly created using a tool, and 

basic grammatical sentence like variable declaration and function declaration can be 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

22 

changed to a meaningless string. The method of compressing a string and replacing 

with a meaningless string makes a string much longer than the non-obfuscated string. 

 

 

 

 

 

 

 
Figure 5. Obfuscation by            Figure 6. Obfuscating variable names,  

splitting a string                     function names, and content splitting  

 

3. Related Studies 

Currently, the “Drive-by Download” attack is the main attack pattern, where the file 

conducting malicious behavior is downloaded without the user’s awareness when the 

user visits the malicious web site. As a result, many studies are carried out that 

constrain access to the malicious web site by checking the malicious nature of the web 

page concerned. These studies can be broadly grouped into the static analysis method, 

which analyzes web site codes only, and the dynamic analysis method that checks the 

system change by visiting the web page concerned. Description of dynamic analysis 

will follow that of static analysis. 

 

3.1. Obfuscated web site static analysis system 

Obfuscated web site analysis using Malzilla [4] is most representative. Malzilla is the 

method of analyzing source codes sequentially after downloading them first by entering 

the URL of the web site to analyze. Obfuscated strings and JavaScript codes are 

normalized by adding the particular function (alert, eval, unescape, etc.) while decoding 

source codes. If decoding of obfuscated codes still results in obfuscated codes, normal 

JavaScript can be checked by decoding the obfuscated code again. There is a 

shortcoming that the analyzer should determine whether the detected JavaScript code is 

an attack JavaScript that induces malicious behavior. 

There is another method that analyzes the pattern of web page strings. [5] This 

method separates obfuscated JavaScript codes from normal ones, using N-grame, 

entropy, and string size. If JavaScript is found to exceed the certain threshold value, the 

web site in question will be deemed as a malicious web site. As this method detects a 

malicious web site mainly by obfuscation, instead of the characteristics of the certain 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

23 

malicious code, it could be difficult to detect a malicious web site that contains normal 

JavaScript. 

However, the static analysis method can find the obfuscation characteristics after 

analyzing source codes of the web site in question, or can analyze the web site by 

interpreting normal JavaScript after decoding obfuscated JavaScript. As only source 

codes are read without visiting the web site, this method doesn’t cause direct damage by 

an attack. Therefore, the analysis system doesn’t have to be initialized. However, it 

takes too long to analyze one web site, even considering the advantage of this method. 

That is, web site source codes should be decoded sequentially or additional functions 

should be inserted after downloading them, so that the analyzer can recognize the 

format. In addition, even though the static analysis time can be shortened by generating 

a signature, based on the characteristics of the malicious web site, more time can be 

taken to detect a variant and generate a signature, if a variant is created. 

 

3.2. Obfuscated web site dynamic analysis system 

Unlike the static analysis method, the dynamic analysis method visits the web site to 

see if any of the web page in question causes any change in the user’s system in order 

to analyze malicious behavior of the web site. The web site obfuscated with JavaScript 

is not directly decoded. Instead, JavaScript codes are executed, and the result is 

analyzed to check malicious behavior. 

Wepawet [6] from isecLAB visits the web site from the virtual environment system, 

which was developed for analysis, using the entered web site address, and analyzes the 

visit result. The virtual environment system analyzes whether the visited web site is 

obfuscated or not, and whether any malicious behavior is committed or not, and shows 

the analysis result. Frequency of variable and function declaration, use times of the 

particular function, and length of the dynamically generated code are analyzed to check 

the obfuscation status. In particular, the result of obfuscated JavaScript can be checked. 

In addition, and the result and type of malicious behavior can be directly checked by 

checking the change of the virtual environment system, by comparing characteristics of 

the particular malicious behavior code with those of analyzed JavaScript. Unlike the 

existing static analysis method, the content of JavaScript can be checked, even though 

the analyst doesn’t manually look into the content of JavaScript, as the system change 

is checked and the result is analyzed. 

In addition, MonkeyWrench[7] from G Data Softwafe AG. also analyzes the web 

page, using an analysis method similar to Wepawet. 

The dynamic analysis method is fast and shows more accurate examination results 

than the static analysis method. In addition, it has the advantage of being able to 

analyze JavaScript codes that are generated dynamically. The dynamic analysis method 

can check the malicious nature of the web site in question within shorter time than 

static analysis. However, an environment should be created that allows execution of 

malicious behavior contained in the malicious obfuscated web site. 

Malicious codes make an attack by exploiting vulnerabilities of the particular 

application or auxiliary program. Therefore, malicious behavior can be analyzed only 

when that particular application has been developed in a virtual environment in 

advance. In addition, an environment should be created in several proper ways, in order 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

24 

to analyze various types of malicious codes. Consequently, much time and efforts are 

required to build these analysis environments by malicious code. Also, dynamic 

analysis is performed in the virtual environment system, as the attack is made directly 

in the system. These virtual environment systems should be initialized as many times as 

web site analysis, which results in a significant amount of time consumption and 

inefficient use of resources. 

 

4. JavaScript obfuscation strength check system 

Most malicious web sites use obfuscated JavaScript. When obfuscated JavaScript is 

used, JavaScript analysis takes a considerable amount of time, and the program 

blocking malicious web sites can be bypassed even temporarily. Detecting these 

malicious websites and controlling access to these web sites becomes the conversation 

topic. In addition, the number of malicious obfuscated websites is gradually increasing. 

So, it is inefficient to use the static analysis method, as analysis takes too much time, or 

the dynamic analysis method that is difficult to create the environment. As a result, it is 

necessary to build a system that collects suspicious malicious websites in a hybrid 

format, which can supplement these shortcomings. The long-term purpose of this study 

also lies in the development of such a system. Collecting as many suspicious websites 

as possible and sending to the analysis system is the major purpose of the JavaScript 

obfuscation strength check system, which is proposed by this paper. Therefore, as many 

obfuscated web sites as possible should be detected among all websites. That is, 

reducing the number of non-detectable websites is the major objective of the JavaScript 

obfuscation strength check system. The additional objective is to provide a probability 

that is similar to a false detection ratio of the existing dynamic analysis system. 

Obfuscated JavaScript looks like a list of meaningless strings, if obfuscated codes are 

not decoded. For that reason, when people look at these obfuscated JavaScript with 

naked eyes, they may see the strings with unidentifiable meanings. As a result, 

obfuscation can be checked with ease. However, it would not be easy to check 

JavaScript that was obfuscated by machine. As a machine cannot understand the 

meaning of the particular string, it cannot distinguish between meaningful strings and 

meaningless strings. If we assume that a machine is configured in such way that it can 

understand the meaning of the string, and check the obfuscation status of the string, 

understanding the meaning of the string and developing the database would take 

considerable amounts of time and resources. Therefore, we propose the method of 

checking obfuscated JavaScript, using the characteristics of obfuscated JavaScript, 

instead of the analysis focused on the meaning of strings. With focus on the 

characteristics of obfuscated JavaScript as described in Chapter 2, we propose the 

JavaScript obfuscation strength check system, which becomes the major module of the 

hybrid type analysis system that combines strengths of the static and dynamic analysis 

system as described in Chapter 3. 

 

4.1. Criteria of obfuscation strength check 

Studies are conducted that search obfuscated malicious attack websites using web 

page string patterns. [5] These studies select N-Gram, entropy and word size as the 

primary items to be scrutinized. Obfuscation of the websites is checked using these 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

25 

criteria. The JavaScript obfuscation strength check system proposed by this paper 

presents more detailed criteria than the existing detection criteria, and takes a different 

approach than existing scrutinizing methods. [5] The primary criteria that are 

scrutinized include string length, density, frequency of the particular function, 

frequency of special characters, and entropy value. These criteria are used to measure 

the obfuscation strength of an obfuscated website. In addition, malicious behavior is 

checked by directly examining malicious behavior characteristics, instead of 

interpreting JavaScript which is usually obfuscated by the characteristics of malicious 

codes. 

 

4.1.1. Density : Length of a string used in the web source code is selected by the 

density of the JavaScript obfuscation strength check system. Generally, the obfuscated 

string is longer than the existing string. The length of a string tends to increase while 

encoding a string or replacing it with a meaningless string. Therefore, if the length of a 

single string is longer than 200 characters, when measured, the website in question is 

deemed a malicious obfuscated website. A single string refers to the listed string that is 

separated by a special character (<,>,“,‘,[,],{,}, etc.), unlike other studies on malicious 

obfuscated website detection, which use string patterns. [5] Existing studies set one 

string based on a blank character. By this method, normal strings like the URLs of 

normal websites can be interpreted as malicious behavior. Therefore, the criteria are set 

to be stronger than blank characters, in order to prevent false detection. Existing studies 

propose 350 characters as the criteria for determining malicious obfuscated websites, 

whereas this study set “over 200 characters” as the criteria of detecting a single string 

to prevent false detection. Even though there is a possibility of non-detection, the 

number of non-detected websites can be reduced, by setting the detailed examination 

criteria with focus on malicious behavior codes using frequency and entropy, which 

will be described below. 

 
Figure 7. Maximum length of                      Figure 8. Maximum length of 

 a single string in a normal website            a single string in a malicious website 

4.1.2 Frequency : The JavaScript obfuscation strength check system uses the 

frequency of the particular function, encoding mark, and % symbol occurrence, as the 

detailed check items to check frequency. 

One of the major characteristics in obfuscated JavaScript is that the part is also 

included, which normalizes obfuscated strings using particular functions such as eval, 

replace, and fromCharCode. Therefore, the proposed system checks the possibility of 

obfuscation, by checking the use frequency of these functions. Besides, those which are 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

26 

considered dynamic functions are also checked, such as document.write and 

document.create.Element, as obfuscation can be released through dynamic generation. 

 
Figure 9. Frequency of                          Figure 10. Frequency of %  
the particular function                      symbol besides the HTTP link (%) 

To calculate the frequency of a particular function, the total use times of the 

particular function is divided by the number of total strings. The reason that the total 

use time is divided by the number of total characters in a web source instead of the total 

of JavaScript strings is that it reflects the total size of the web page. Another reason that 

the total functions used in JavaScript are divided by the total number of the particular 

function is as follows. If divided by the total number of used functions, there is no big 

frequency difference between normal JavaScript and obfuscated JavaScript. In 

particular, the string can be split, or the length of a single string can be reduced (one of 

the obfuscated JavaScript characteristics), so that the string can be combined later, 

using a + operation. [3] The number of the particular function in JavaScript using this 

obfuscation method increases more than other JavaScript using other obfuscation 

methods. Therefore, frequency varies significantly, if obfuscated with the same content. 

However, if divided by the total number of strings, the use frequency of the particular 

function doesn’t change much, as the number of strings increased by obfuscation is 

greater than the increase in the use times of the particular function, or the number of 

strings is already large enough. Therefore, it is more effective to calculate frequency, 

using the number of used strings, instead of the total number of functions, in order to 

scrutinize malicious obfuscated JavaScript. Generally, obfuscated JavaScript shows 

more occurrence frequency of a particular function than normal JavaScript. 

An encoding mark is another frequency check item. One of the characteristics of 

malicious behavior codes is that these codes deteriorate readability using ASCII 

characters, Unicode, and number system conversion, instead of a general string; 

therefore, the fact that these encoding marks appear more frequently than in normal 

JavaScript can be utilized. Frequency can be calculated by dividing the total use times 

of each encoding mark by the number of characters used in JavaScript. Generally, 

malicious obfuscated JavaScript shows a higher frequency than normal JavaScript. 

Frequency of the “%” symbol – the last frequency examination criteria, can be 

divided into the frequency inside the HTTP link and the frequency outside the HTTP 

link. The occurrence frequency of the “%” symbol outside the HTTP link can be 

checked, using the fact that an encoded URL generally uses more % symbols in the 

HTTP link. 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

27 

Studies on malicious obfuscated website detection using string patterns [5] check the 

use frequency of each character, using the N-Gram method. For this method, the use of 

various characters is utilized, which are the characteristics of obfuscated JavaScript. 

However, it has the shortcoming of a high probability of false detection, as examination 

is performed with focus on the individual characters e.g. x, u, and @, instead of 

characters that conduct specific behavior. 

 

 
Figure 11. Difference between total Java      Figure 12. Total JavaScript entropy  
entropy and average Java block entropy 

4.1.3 Entropy[8] : The JavaScript obfuscation strength check system provides 8 

detailed check criteria for obfuscation strength check, such as entire JavaScript entropy, 

special character entropy, and variable and function name entropy. 

The existing website entropy measurement method detects the malicious nature of 

the website, by measuring entropy based on the entirety of a web site’s sources. The 

proposed system puts more emphasis on JavaScript entropy of the website in question, 

rather than entropy of the entire website source; and in addition, the entire entropy of 

JavaScript, and the code beginning with <script **> and ending with </script> as a Java 

block. Therefore, the average Java block entropy can be obtained by calculating entropy 

of each Java block, and dividing the total sum by the number of Java blocks, and the 

entire JavaScript entropy is the one that is calculated by setting a set of Java blocks as a 

big set. 

The proposed system has two detailed examination criteria, using entire JavaScript 

entropy. Obfuscation can be checked, using the difference between the normal 

JavaScript entropy value and the obfuscated JavaScript entropy value. Obfuscation is 

also checked, using the difference between the entire JavaScript and average Java block 

entropy. Generally, the entire JavaScript entropy value of obfuscated JavaScript shows 

a smaller value than normal JavaScript. In addition, the difference between the average 

Java block entropy shows a value smaller than 0, or a significantly larger value than 

normal JavaScript. 

Five detailed examination criteria can be obtained, using special character entropy. 

Entropy of the most frequently occurring character among special characters will be set 

as the criteria. Obfuscated JavaScript uses particular special characters frequently. 

Therefore, there can be some values for which the entropy value of the maximum use 

special character is larger than the normal one. Three criteria can be set, using the 

entropy of the special character based on the used special character, special character 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

28 

entropy in the total character set used by JavaScript, and the difference between the 

calculated two values. 

 

 
Figure 13. Special character entropy     Figure 14. Difference of special character 

in the entire set                        entropy(special character set – entire 
 character set) 

Special character entropy in the total used character set shows lower value in 

obfuscated JavaScript and normal JavaScript. Due to this characteristic, the difference 

between entropy in the used special character set and entropy in the entire character set 

increases further, and the value of obfuscated JavaScript is larger than normal 

JavaScript. The difference can be calculated for general characters, not special 

characters, and can be set as another detailed check criteria. Generally, obfuscated 

JavaScript shows the lower value in the difference between general character entropy – 

the last examination criteria, as obfuscated JavaScript uses various characters. 

Entropy using variable and function names is set as the last examination criteria. 

There are some cases in which variable names and function names in obfuscated 

JavaScript are also obfuscated. Therefore, entropy of each variable name and function 

name with focus on these characteristics 

can be measured, and the average of the total value can be used to calculate the entropy 

value. Many characters are not used for function and variable names in normal 

JavaScript, and many characters are used in duplicate. Therefore, the entropy value is 

generally lower in normal JavaScript. 

 
Figure 15. General character entropy     Figure 16. Difference of general character 

in the entire set                        entropy(general character set – entire 
character set) 

     
4.2. Characteristics of the obfuscation strength check system 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

29 

Considering that the string length detection value is between 256 and 300 according 

to the existing study results [5, 6], the proposed system determines malicious 

obfuscated websites with lower values. To reduce the non-detection ratio of malicious 

obfuscated websites, which is the major objective of obfuscation strength check 

systems, density is selected as a core obfuscation strength factor. Frequency and 

entropy results are selected as the factors that show obfuscation strength in more detail. 

And, each detailed check item is assigned a different weight, depending upon the 

characteristics of the malicious behavior code and the importance of the obfuscation 

characteristic. The proposed system can indicate how much danger the website poses in 

later analysis, by marking malicious obfuscation strength, based on the measured scores 

after website check. In addition, the proposed JavaScript obfuscation strength check 

system can reduce the web site check time, because it reads the website source only to 

check for malicious 

behavior, thereby 

compensating 

for the shortcomings 

of the existing 

dynamic website 

analysis system. In 

addition, the probability of 

non- detection and 

false detection of 

malicious obfuscated 

websites is reduced, 

through enabling to 

check obfuscation 

and malicious 

behavior by checking the 

web source code 

characteristics 

only, unlike the existing 

static website 

analysis which requires 

longer analysis time. 

 

 

 

 

 

 

 

 

 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

30 

 

 

 

 

 

 

Figure 17. JavaScript obfuscation strength check system 

 

4.3. Comparison with existing systems 

Wepawet [6] and MonkeyWrench[7] – dynamic malicious websites, and the detection 

system provided by Google are compared. Examination target websites are selected by 

referring to the malicious domain reporting site, and normal websites are also selected 

for examination as comparison targets. 

Selected target websites are compared with the existing dynamic analysis system. 

The major objective of the JavaScript obfuscation strength check system – reducing the 

ratio of non-detected websites, was achieved. As shown in Table 1, the proposed system 

shows a lower non-detection ratio than the dynamic analysis system. Also, the analysis 

hours are reduced, and a similar level of false detection ratio is achieved. These results 

indicate that the proposed system provides a method of detecting as many malicious 

obfuscated websites as possible. 

 

Table 1. Comparison of the proposed system with existing systems 

  
Proposed 
system 

Weapwet MonkeyWrench Google System 

Non-detection 
ratio 

3.84% 12.82% 11.78% 10.15% 

False detection 
ratio 

12.13% 4.12% 14.68% 12.57% 

Analysis failure 
(took longer than 

2minutes) 
0% 7.85% 19.89% 21.68% 

 

Table 2. Major detection values of JavaScript obfuscation strength check 

Assessment item 
Average Max. value Min. value 

Normal Obfuscation Normal Obfuscation Normal Obfuscation 

String length 91.9167 10191.7 205 63363 23 367 

Frequency of 
particular function 

0.53299 18.1484 3.66 45.454 0 0 

Java entropy 
difference 

0.6144 0.82288 1.66098 4.01651 0 -0.4246 

Entire Java entropy 5.34948 4.89889 5.88991 6.06263 4.90447 2.24381 

Special character 1.526275 0.84121 1.83064 2.00827 1.14211 0.1976 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

31  

entropy (entire set) 

Non-special 
character entropy 

difference 
0.91492 0.46986 1.49404 1.48538 0.47757 0.000267 

 

 

5. Conclusion and Further Studies 

This paper proposed a malicious behavior suspected website detection system based 

on JavaScript obfuscation that analyzes JavaScript density, frequency, entire JavaScript 

entropy, and entropy of each characteristic. If the analysis time is short when checking 

malicious behavior websites, which are gradually on the rise, the non-detected 

malicious website ratio is smaller, and more websites can be detected. However, a 

hybrid type analysis system should be developed that compensates for the shortcomings 

of the existing dynamic analysis system, in order to use the JavaScript obfuscation 

strength check system efficiently. Therefore, more studies are required to develop a 

hybrid type analysis system. Also, a study on the website analysis method needs to be 

carried out, using a method other than JavaScript. 

 
 

 

Acknowledgement 

This work was supported by the IT R&D program of MKE/KEIT. [10035427, The 

Development of Automatic Analysis and Malicious Site Detection Technology Against 

Malware] 

 

References 

[1] Jien-Tsai Chan, Wuu Yang, "Advanced obfuscation techiques for Java bytecode", The Jouarnal of 
Systems and Software 71, August 2002 

[2] Zhanyong TANG, Xiaojiang CHEN, Dingyi FANG, Feng CHEN, "Research on Java Software 
Protection with the Obfuscation in Identifier Renaming", 2009 Fourth International Conference on 
Innovative Computing, Information and Control, 2009 

[3] Kolisar, "WhiteSpace:A Diffrent Approach to JavaScript Obfuscation", DEFCON 16, August 2008 

[4] Malzilla.org Rhino:JavaScript for Java. http://www.mozilla.org/rhino 

[5] YoungHan Choi, TaeGhyoon Kim, SeokJin Choi, "Automatic Detection for Javascript Obfuscation 
Attacks in Web Pages through String Pattern Analysis", International Journal of Security and Its 
Applications, 4(2), pp.13-26, April 2010 

[6] Marco Cova, Christopher Kruegel, Giovanni Vigna, "Detection and Analsis of Drive-by-Download 
Attacks and Malicious JavaScript Code", Management of Computing and Information Systems, April 
2010 

[7] Armin Bőscher, Michael Meier, Ralf Benzmőller, "Throwing a MonkeyWrench into Web Attacks 
Plans", International Fedration for Information Processing 2010, pp.28-39, 2010 

[8] Robert M.Gray, "Entropy and Information Theory", July 16 2009 

 

Authors 

Byung-Ik Kim 

 

Byung-Ik Kim received the B.S. degree in Information and Computer Science 

from Ajou University, in February 2010. 



International JournalInternational JournalInternational JournalInternational Journal    of Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technologyof Advanced Science and Technology    

Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011Vol 26, January 2011    

    

    

32 

 

 

He is currently working as Research Associate of Korea Internet & Security Agency 

His research interests include computer security. 

 

 

Chae-Tae Im 

 

Chae-Tae Im received the B.S. degree in Computer Science from Chungnam 

Nationl University, in February 2000, and the M.S. degree in Computer Science 

fromPohang University of Science and Techinology, in 2003, 

He is currently working as Senior Research Associate of Korea Internet & 

Security Agency 

 

 

Hyun-Chul Jung 

 

Hyun-Chul Jung received the B.S. degree in Statistical Computing from 

University of Seoul, in February 1996, 

and the M.S. degree in Computer Science from Kwangwoon University, in 

August 1998, 

He is currently working as Director of Korea Internet & Security Agency 

His research interests include network security. 


